Merge branch 'main' of ssh://gitlab.fdmci.hva.nl/propedeuse-hbo-ict/onderwijs/2023-2024/out-a-se-ti/blok-3/qaajeeqiinii59

This commit is contained in:
Sietse Jonker
2024-03-05 11:27:31 +01:00

View File

@@ -57,7 +57,7 @@ examples, basics, fade
\/ servo's
examples, servo, sweep
### Linux and raspberrypi.
### Linux and raspberryPI.
To gain more knowledge about linux, i first asked my class mates if they could get me started.
They showed me how to gain acces to a server, and told me how to navigate through files.
By doing this i got taught the following commands:
@@ -71,4 +71,97 @@ By doing this i got taught the following commands:
~ $ 'ssh username@ip address' = open ssh connection.
From here i went and looked up several linux video's wich taught me the following:
....
### Air, temperature, and all sort of stuff.
After the linux coding i decided to take a step back and began gaining experience with sensors.
I began trying to make our group project's "node" for myself.
I did this by using one of the main sensors and tried programing it in myself.
I used this website for the information and for the right library:(https://randomnerdtutorials.com/esp32-dht11-dht22-temperature-humidity-sensor-arduino-ide/).
Aside from the website i used my teammates for help where it was needed.
I wanted to make my own spin on the original design by including a button to activate the sensor and an LED to show if its on.
At first I tried to use my own DHT11, but apparently it didn't work. So i used one from my Teammates.
The rest of the tutorial was clear and worked like a charm.
the code used looks like this:
```
#include "DHT.h"
#define DHTPIN 4
#define DHTTYPE DHT11
DHT dht(DHTPIN, DHTTYPE);
void setup() {
// put your setup code here, to run once:
Serial.begin(9600);
Serial.println(F("DHTxx test!"));
dht.begin();
}
void loop() {
delay(2000);
float h = dht.readHumidity();
// Read temperature as Celsius (the default)
float t = dht.readTemperature();
float f = dht.readTemperature(true);
if (isnan(h) || isnan(t) || isnan(f)) {
Serial.println(F("Failed to read from DHT sensor!"));
return;
}
// Compute heat index in Fahrenheit (the default)
float hif = dht.computeHeatIndex(f, h);
// Compute heat index in Celsius (isFahreheit = false)
float hic = dht.computeHeatIndex(t, h, false);
Serial.print(F("Humidity: "));
Serial.print(h);
Serial.print(F("% Temperature: "));
Serial.print(t);
Serial.print(F("°C "));
Serial.print(f);
Serial.print(F("°F Heat index: "));
Serial.print(hic);
Serial.print(F("°C "));
Serial.print(hif);
Serial.println(F("°F"));
}
```
And The fysical board looks like this:
And here it looks in action:
Later on i could expand this code and the fysical product to include the rest of the sensors.
### Buzzers .pt 2
I found out how to make multiple buzzers go off with the press of one button and increase as mutch as there are pins.
I tried to not look up anything for this one, but did ask questions form time to time.
I designed it to work with scaning if there is and input and then output this signal to activate the buzzers.
This output signal can activate over multiple pins so this one button can set off all sorts of stuff.
The code is short and simple:
```
int button = 20;
int buzzerone = 12;
int buzzertwo = 11;
void setup() {
// put your setup code here, to run once:
pinMode(button, INPUT);
pinMode(buzzerone, OUTPUT);
pinMode(buzzertwo, OUTPUT);
}
void loop() {
if(digitalRead(button) == HIGH){
digitalWrite(buzzerone, HIGH);
digitalWrite(buzzertwo, HIGH);
}else{
digitalWrite(buzzerone, LOW);
digitalWrite(buzzertwo, LOW);
}
}
```
and the fysical design looks like this: ...