Merge branch '44-als-gebruiker-wil-ik-dat-de-website-automatisch-het-aantal-nodes-dat-ik-heb-aangesloten-op-de' of ssh://gitlab.fdmci.hva.nl/propedeuse-hbo-ict/onderwijs/2023-2024/out-a-se-ti/blok-3/qaajeeqiinii59 into 44-als-gebruiker-wil-ik-dat-de-website-automatisch-het-aantal-nodes-dat-ik-heb-aangesloten-op-de

This commit is contained in:
sietse jonker
2024-03-29 11:26:39 +01:00
5 changed files with 218 additions and 63 deletions

View File

@@ -4,12 +4,10 @@ nodeReadings esp32Node;
void setup() {
// put your setup code here, to run once:
esp32Node.setup();
esp32Node.resetValues();
}
void loop() {
// put your main code here, to run repeatedly:
esp32Node.loop();
}

View File

@@ -2,16 +2,19 @@
nodeReadings::nodeReadings() {
//Making all the new object as defined in the .h file
dht = new DHT(DHTPIN, DHTTYPE);
display = new Adafruit_SH1106G(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);
webSocket = new websockets(); //nu naar eigen class
webSocket = new websockets();
sgp = new Adafruit_SGP30();
//setting the reding for every 5 sec
interval = 5000;
resetValues();
}
//Script for simpley reseting every value to 0
void nodeReadings::resetValues() {
counter = 0;
eCO2 = 0;
@@ -25,6 +28,7 @@ void nodeReadings::resetValues() {
noise = false;
}
//Setup for initilising the dht and sgp sensors. Also the display is set up.
void nodeReadings::setup(){
// make serial connection at 115200 baud
Serial.begin(115200);
@@ -63,6 +67,7 @@ void nodeReadings::update(){
// display sensordata on oled screen
displayData();
//send the data to the websockets
webSocket->sendMyText("{\"node\": \"" + String(WiFi.macAddress()) + "\", \"Temp\":\"" + String(temperature) + "\",\"Humi\":\"" + String(humidity) + "\",\"eCO2\":\"" + String(sgp->eCO2) + "\",\"TVOC\":\"" + String(sgp->TVOC) + "\"}");
sgp->getIAQBaseline(&eCO2_base, &TVOC_base);
@@ -90,6 +95,7 @@ void nodeReadings::displayData() {
display->display();
}
//function
void nodeReadings::checkForError(){
if (!sgp->IAQmeasure()) {
Serial.println("SGP30: BAD");

View File

@@ -0,0 +1,120 @@
# Nodes
## Introduction
The nodes are the devices that are placed in the rooms. The nodes are used to collect the data from the sensors. Every node is connected to the websocket, and sends their data with their mac address in json format. The websocket broadcasts the node data back to all clients, and since our website functions as a client it also receives the data. Every node will, depending on what node, be made into a class.
## Requirements
### Sensornode
- Every node has to have a unique nodeID
- Every node has to have their corresponding sensorsvalues in form of arrays
### Feedbacknodes
- Every node has to have a unique nodeID
- Every node has to have their corresponding feedback in form of a 2D array
## Class diagrams
### Node
```mermaid
classDiagram
Node <-- SensorNode : extends
Node <-- FeedbackNode : extends
class Node {
+nodeID
+processNodeData()
+updateNodeData()
}
class SensorNode {
+tempArray
+humiArray
+eco2Array
+tvocArray
}
class FeedbackNode {
+feedbackArray
}
```
# Graphs
## Introduction
The graphs are used to display the data from the sensors. The data is collected by the raspberry pi and then displayed on the graphs. The graphs are made using the [plotly library](https://plotly.com/javascript/) .
## Requirements
### Live graphs
- Every node has to have a live graph
- The graphs has to be updated every 5 seconds
- All the data from one node has to fit in one graph
## Class diagrams
### Graphs
```mermaid
classDiagram
liveGraph --> graph: extends
class graph {
+nodeId
makeGraph()
}
class liveGraph {
+cnt
+timeArray
+tempArray
+humiArray
+eco2Array
+tvocArray
makeGraph()
updateGraph()
updateData()
}
```
## Order of operations
### Live graphs
```mermaid
sequenceDiagram
participant Node
participant Raspberry pi
participant Website
Node->>Raspberry pi: sensordata via websocket every 5 seconds
Raspberry pi->>Website: Node data via websocket if new data is received from the node
Website->>Website: updateGraph()
Website->>Website: updateData()
```
1. Every node sends its data to the raspberry pi via websocket every 5 seconds
2. The raspberry pi sends the data to the website via websocket if new data is received from the node
3. The website updates the data coming from the raspberry pi on its own variables and arrays
4. The website updates the live graphs every time new data is received from the websocket
### Node
```mermaid
sequenceDiagram
participant Node
participant Raspberry pi
participant Website
Node->>Raspberry pi: node data via websocket every 5 seconds
Raspberry pi->>Website: Make a new object depending on what node it is
Website->>Website: updateNodeData()
Website->>Website: processNodeData()
```

View File

@@ -1,56 +0,0 @@
# Graphs
## Introduction
The graphs are used to display the data from the sensors. The data is collected by the raspberry pi and then displayed on the graphs. The graphs are made using the [plotly library](https://plotly.com/javascript/) .
## Requirements
### Live graphs
- Every node has to have a live graph
- The graphs has to be updated every 5 seconds
- All the data from one node has to fit in one graph
## Class diagrams
### Live graphs
```mermaid
classDiagram
class liveGraph {
+nodeId
+cnt
+timeArray
+tempArray
+humiArray
+eco2Array
+tvocArray
makeGraph()
updateGraph()
updateData()
}
```
## Order of operations
### Live graphs
```mermaid
sequenceDiagram
participant Node
participant Raspberry pi
participant Website
Node->>Raspberry pi: sensordata via websocket every 5 seconds
Raspberry pi->>Website: Node data via websocket if new data is received from the node
Website->>Website: updateGraph()
Website->>Website: updateData()
```
1. Every node sends its data to the raspberry pi via websocket every 5 seconds
2. The raspberry pi sends the data to the website via websocket if new data is received from the node
3. The website updates the data coming from the raspberry pi on its own variables and arrays
4. The website updates the live graphs every time new data is received from the websocket

View File

@@ -1,7 +1,47 @@
class liveGraph {
class node {
// Constructor to initialize the node
constructor(nodeId) {
this.nodeId = nodeId;
this.temperature = 0;
this.humidity = 0;
this.eCO2 = 0;
this.TVOC = 0;
this.connected = false;
}
// Function to update the data
updateData(temperature, humidity, eCO2, TVOC) {
this.temperature = temperature;
this.humidity = humidity;
this.eCO2 = eCO2;
this.TVOC = TVOC;
}
// Function to update the connection status
updateConnection() {
if (connectedNodes[this.nodeId]) {
this.connected = true;
} else {
this.connected = false;
}
}
}
class feedbackNode extends node {
// Constructor to initialize the feedback node
constructor(nodeId) {
super(nodeId);
this.feedback = {};
this.answers = 0;
}
// Function to update the feedback
updateFeedback(feedback) {
this.feedback = feedback;
}
}
class liveGraph extends graph {
// Constructor to initialize the graph
constructor(id) {
this.timeArray = [];
super(id);
this.tempArray = [];
this.humiArray = [];
this.eco2Array = [];
@@ -60,7 +100,12 @@ class liveGraph {
let update = {
x: [[this.timeArray]],
y: [[this.tempArray], [this.humiArray], [this.eco2Array], [this.tvocArray]]
y: [
[this.tempArray],
[this.humiArray],
[this.eco2Array],
[this.tvocArray],
],
};
let olderTime = time.setMinutes(time.getMinutes() - 1);
@@ -82,4 +127,46 @@ class liveGraph {
this.eco2Array.push(eCO2 / 10);
this.tvocArray.push(TVOC / 10);
}
}
}
class graph {
// Constructor to initialize the graph
constructor(id) {
this.nodeId = "graph" + id;
this.timeArray = [];
}
// Function to create a graph
makeGraph(amountOfGraphs, array1, array2, array3, array4) {
for (let i = 0; i < amountOfGraphs; i++) {
// Create a new line for temperature
Plotly.plot(this.nodeId, [
{
x: this.timeArray, // Use timeArray as x values
y: array + i,
mode: "lines",
line: { color: "#FF0000" },
name: "Temperature",
},
]);
}
}
// Function to update the graph with new values got from updateData function
updateGraph(array1, array2, array3, array4) {
let time = new Date();
this.timeArray.push(new Date());
let update = {
x: [[this.timeArray]],
y: [array1, array2, array3, array4],
};
let olderTime = time.setMinutes(time.getMinutes() - 1);
let futureTime = time.setMinutes(time.getMinutes() + 1);
let minuteView = {
xaxis: {
type: "date",
range: [olderTime, futureTime],
},
};
}
}