Merge branch 'main' of ssh://gitlab.fdmci.hva.nl/propedeuse-hbo-ict/onderwijs/2023-2024/out-a-se-ti/blok-4/muupooviixee66
This commit is contained in:
@@ -1,12 +1,12 @@
|
||||
package com.example.fitbot.exercise;
|
||||
|
||||
import com.example.fitbot.util.path.GesturePath;
|
||||
import com.example.fitbot.util.path.AnglePath;
|
||||
|
||||
public class Exercise {
|
||||
|
||||
public final EMuscleGroup muscleGroup;
|
||||
public final GesturePath leftPath;
|
||||
public final GesturePath rightPath;
|
||||
public final AnglePath leftPath;
|
||||
public final AnglePath rightPath;
|
||||
public final String name;
|
||||
public final String shortDescription;
|
||||
public final String description;
|
||||
@@ -26,7 +26,10 @@ public class Exercise {
|
||||
* @param imageUrl The URL of the image.
|
||||
* @param videoUrl The URL of the video.
|
||||
*/
|
||||
public Exercise(EMuscleGroup muscleGroup, String name,String shortDescription, String description, String imageUrl, String videoUrl, GesturePath leftPath, GesturePath rightPath, float exerciseTimeInSeconds) {
|
||||
public Exercise(EMuscleGroup muscleGroup, String name, String shortDescription,
|
||||
String description, String imageUrl, String videoUrl,
|
||||
AnglePath leftPath, AnglePath rightPath, float exerciseTimeInSeconds) {
|
||||
|
||||
this.name = name;
|
||||
this.muscleGroup = muscleGroup;
|
||||
this.shortDescription = shortDescription;
|
||||
|
@@ -1,6 +1,6 @@
|
||||
package com.example.fitbot.exercise;
|
||||
|
||||
import com.example.fitbot.util.path.GesturePath;
|
||||
import com.example.fitbot.util.path.AnglePath;
|
||||
import com.google.gson.JsonObject;
|
||||
import com.google.gson.JsonParser;
|
||||
|
||||
@@ -28,9 +28,6 @@ public class ExerciseManager {
|
||||
private static final String PROPERTY_PATH = "path";
|
||||
private static final String PROPERTY_NAME = "name";
|
||||
|
||||
// The delimiter used to separate the paths of the sensors.
|
||||
public static final String PATH_DELIMITER = ":";
|
||||
|
||||
public static final int SENSOR_COUNT = 2;
|
||||
|
||||
private static final String[] REQUIRED_PROPERTIES = {
|
||||
@@ -40,8 +37,8 @@ public class ExerciseManager {
|
||||
};
|
||||
|
||||
public static final int DEFAULT_EXERCISE_REPETITIONS = 10;
|
||||
public static final float DEFAULT_SEGMENT_SPEED = 1.0f;
|
||||
public static final float EXERCISE_ERROR_MARGIN = 1.0f;
|
||||
public static final float EXERCISE_TIME_SCALING_FACTOR = 1.0f;
|
||||
|
||||
/**
|
||||
* Function for sending an HTTP request to the server.
|
||||
@@ -104,9 +101,10 @@ public class ExerciseManager {
|
||||
// If one wants to add support for more sensors, one will have to adjust the Exercise
|
||||
// class to support more paths.
|
||||
System.out.println(content.get(PROPERTY_PATH).getAsString());
|
||||
String[] leftRightData = content.get(PROPERTY_PATH).getAsString().split(PATH_DELIMITER);
|
||||
|
||||
if (leftRightData.length != SENSOR_COUNT) {
|
||||
AnglePath[] paths = AnglePath.fromString(content.get(PROPERTY_PATH).getAsString());
|
||||
|
||||
if (paths.length != SENSOR_COUNT) {
|
||||
System.out.println("Invalid path data.");
|
||||
return null;
|
||||
}
|
||||
@@ -118,9 +116,9 @@ public class ExerciseManager {
|
||||
content.get(PROPERTY_DESC).getAsString(),
|
||||
content.get(PROPERTY_IMAGE_URL).getAsString(),
|
||||
content.get(PROPERTY_VIDEO_URL).getAsString(),
|
||||
GesturePath.fromString(leftRightData[0]),
|
||||
GesturePath.fromString(leftRightData[1]),
|
||||
DEFAULT_SEGMENT_SPEED
|
||||
paths[0],
|
||||
paths[1],
|
||||
content.get(PROPERTY_EXERCISE_DURATION).getAsInt()
|
||||
);
|
||||
} catch (Exception e) {
|
||||
e.printStackTrace();
|
||||
|
@@ -126,7 +126,7 @@ public class FitnessActivity extends RobotActivity implements RobotLifecycleCall
|
||||
exerciseStatusElement.post(() -> {
|
||||
this.fetchExerciseAsync((exercise) -> {
|
||||
// Acquire paths from the exercise and provide them to the motion processor
|
||||
Vector3f[][] vectors = new Vector3f[][]{exercise.leftPath.getVectors(), exercise.rightPath.getVectors()};
|
||||
Vector3f[][] vectors = new Vector3f[][]{exercise.leftPath.getAngleVectors(), exercise.rightPath.getAngleVectors()};
|
||||
|
||||
motionProcessor = new InputProcessor(vectors, exercise.exerciseTimeInSeconds, SENSOR_SAMPLE_RATE);
|
||||
|
||||
|
@@ -16,6 +16,7 @@ import android.view.WindowManager;
|
||||
import android.widget.Button;
|
||||
|
||||
import com.example.fitbot.R;
|
||||
import com.example.fitbot.pepper.Pepper;
|
||||
import com.example.fitbot.util.NavigationManager;
|
||||
|
||||
import java.io.OutputStream;
|
||||
|
@@ -0,0 +1,67 @@
|
||||
package com.example.fitbot.util.path;
|
||||
|
||||
import com.example.fitbot.exercise.ExerciseManager;
|
||||
import com.google.gson.JsonArray;
|
||||
import com.google.gson.JsonElement;
|
||||
import com.google.gson.JsonObject;
|
||||
import com.google.gson.JsonParser;
|
||||
|
||||
import org.joml.Vector3f;
|
||||
|
||||
public class AnglePath {
|
||||
|
||||
// The angles
|
||||
private final Vector3f[] angles;
|
||||
|
||||
/**
|
||||
* Create a new gesture path with a given set of vectors and curvature.
|
||||
*
|
||||
* @param angles The vectors that make up the path.
|
||||
*/
|
||||
public AnglePath(Vector3f[] angles) {
|
||||
this.angles = angles;
|
||||
}
|
||||
|
||||
/**
|
||||
* Method for retrieving the vectors of the GesturePath.
|
||||
*/
|
||||
public Vector3f[] getAngleVectors() {
|
||||
return this.angles;
|
||||
}
|
||||
|
||||
/**
|
||||
* Function for converting a string to a GesturePath object.
|
||||
* This function has been updated to convert Json strings to AnglePath objects.
|
||||
* The JSON must be in the following format:
|
||||
* [
|
||||
* { "deviceId": number, "data": [ [x, y, z], [x, y, z], ... ] },
|
||||
* ]
|
||||
*
|
||||
* @param jsonInput The string to convert
|
||||
* @return The AnglePath object
|
||||
*/
|
||||
|
||||
public static AnglePath[] fromString(String jsonInput) {
|
||||
if (jsonInput == null)
|
||||
throw new IllegalArgumentException("Input string cannot be null");
|
||||
|
||||
JsonElement parsed = JsonParser.parseString(jsonInput);
|
||||
if (!parsed.isJsonArray())
|
||||
throw new IllegalArgumentException("Input string must be a JSON array");
|
||||
|
||||
if ( parsed.getAsJsonArray().size() != ExerciseManager.SENSOR_COUNT)
|
||||
throw new IllegalArgumentException("Input string must contain 2 elements");
|
||||
|
||||
Vector3f[][] angles = new Vector3f[ExerciseManager.SENSOR_COUNT][];
|
||||
for ( int dataArrayIdx = 0; dataArrayIdx < parsed.getAsJsonArray().size(); dataArrayIdx++)
|
||||
{
|
||||
JsonArray array = parsed.getAsJsonArray().get(dataArrayIdx).getAsJsonObject().get("data").getAsJsonArray();
|
||||
angles[dataArrayIdx] = new Vector3f[array.size()];
|
||||
for (int i = 0; i < array.size(); i++) {
|
||||
JsonArray vec = array.get(i).getAsJsonArray();
|
||||
angles[dataArrayIdx][i] = new Vector3f(vec.get(0).getAsFloat(), vec.get(1).getAsFloat(), vec.get(2).getAsFloat());
|
||||
}
|
||||
}
|
||||
return new AnglePath[] {new AnglePath(angles[0]), new AnglePath(angles[1])};
|
||||
}
|
||||
}
|
@@ -1,126 +0,0 @@
|
||||
package com.example.fitbot.util.path;
|
||||
|
||||
import org.joml.Vector3f;
|
||||
|
||||
public class GesturePath {
|
||||
|
||||
// The vectors that make up the path.
|
||||
private final PathSegment[] segments;
|
||||
|
||||
/**
|
||||
* Create a new gesture path with a given set of vectors and curvature.
|
||||
*
|
||||
* @param vectors The vectors that make up the path.
|
||||
*/
|
||||
public GesturePath(Vector3f[] vectors) {
|
||||
if (vectors.length < 2) {
|
||||
this.segments = new PathSegment[1];
|
||||
this.segments[0] = new PathSegment(
|
||||
new Vector3f(0, 0, 0),
|
||||
new Vector3f(0, 0, 0)
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
this.segments = new PathSegment[vectors.length - 1];
|
||||
for (int i = 0; i < vectors.length - 1; i++)
|
||||
segments[i] = new PathSegment(vectors[i], vectors[i + 1]);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor for a GesturePath with provided PathSegments.
|
||||
*
|
||||
* @param segments The PathSegments to initialize the path with.
|
||||
*/
|
||||
public GesturePath(PathSegment... segments) {
|
||||
this.segments = segments;
|
||||
}
|
||||
|
||||
/**
|
||||
* Getter method for retrieving the path segments of this GesturePath.
|
||||
*
|
||||
* @return The path segments.
|
||||
*/
|
||||
public PathSegment[] getSegments() {
|
||||
return segments;
|
||||
}
|
||||
|
||||
/**
|
||||
* Method for retrieving the vectors of the GesturePath.
|
||||
*/
|
||||
public Vector3f[] getVectors() {
|
||||
Vector3f[] vectors = new Vector3f[segments.length + 1];
|
||||
vectors[0] = segments[0].getStart();
|
||||
for (int i = 0; i < segments.length; i++)
|
||||
vectors[i + 1] = segments[i].getEnd();
|
||||
|
||||
return vectors;
|
||||
}
|
||||
|
||||
/**
|
||||
* Method for retrieving the closest path segment to a reference point.
|
||||
*
|
||||
* @param reference The reference point to find the closest path segment to.
|
||||
* @return The closest path segment to the reference point.
|
||||
*/
|
||||
public PathSegment closest(Vector3f reference) {
|
||||
// If there's only one segment, return that one.
|
||||
if (segments.length == 1)
|
||||
return segments[0];
|
||||
|
||||
PathSegment closest = segments[0];
|
||||
for (int i = 1; i < segments.length; i++)
|
||||
closest = PathSegment.closer(closest, segments[i], reference);
|
||||
|
||||
return closest;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the error between an arbitrary path segment and the reference point.
|
||||
*
|
||||
* @param referencePoint The reference point to calculate the error of.
|
||||
* @return The error offset between the path and the reference point.
|
||||
*/
|
||||
public double getError(Vector3f referencePoint) {
|
||||
return closest(referencePoint).difference(referencePoint); // Get the closest segment and calculate the error.
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Function for converting a string to a GesturePath object.
|
||||
* The input string bytes will be directly converted into 3d vectors.
|
||||
* Every scalar is composed of 32 bits (4 characters), meaning 96 bits per vector.
|
||||
* <p>
|
||||
* Note: ASCII to Vector conversion is done in Big Endian format (most significant byte first).
|
||||
*
|
||||
* @param input The string to convert
|
||||
* @return The GesturePath object
|
||||
*/
|
||||
|
||||
public static GesturePath fromString(String input) {
|
||||
if (input == null)
|
||||
throw new IllegalArgumentException("Input string cannot be null");
|
||||
byte[] bytes = input.getBytes();
|
||||
|
||||
// Check if the input string contains a valid amount of bytes (12 bytes per vector)
|
||||
if (input.length() % 12 != 0) {
|
||||
throw new IllegalArgumentException("Invalid input string length (" + input.length() + " bytes provided - must be a multiple of 12)");
|
||||
}
|
||||
Vector3f[] vectors = new Vector3f[input.length() / 12];
|
||||
|
||||
float[] xyz = new float[3];
|
||||
for (int i = 0; i < bytes.length; i += 12) {
|
||||
for (int j = 0; j < 3; j++) {
|
||||
|
||||
xyz[j] = Float.intBitsToFloat(
|
||||
(bytes[i + j * 4] & 0xFF) << 24 |
|
||||
(bytes[i + j * 4 + 1] & 0xFF) << 16 |
|
||||
(bytes[i + j * 4 + 2] & 0xFF) << 8 |
|
||||
(bytes[i + j * 4 + 3] & 0xFF)
|
||||
);
|
||||
}
|
||||
vectors[i / 12] = new Vector3f(xyz[0], xyz[1], xyz[2]);
|
||||
}
|
||||
return new GesturePath(vectors);
|
||||
}
|
||||
}
|
@@ -2,12 +2,15 @@ package com.example.fitbot.util.processing;
|
||||
|
||||
import android.util.Log;
|
||||
|
||||
import com.aldebaran.qi.sdk.object.geometry.Vector3;
|
||||
import com.example.fitbot.exercise.Exercise;
|
||||
import com.example.fitbot.exercise.ExerciseManager;
|
||||
import com.example.fitbot.util.server.WebServer;
|
||||
import com.google.gson.JsonArray;
|
||||
import com.google.gson.JsonElement;
|
||||
import com.google.gson.JsonObject;
|
||||
import com.google.gson.JsonParser;
|
||||
import com.google.gson.JsonPrimitive;
|
||||
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
import org.joml.Vector3f;
|
||||
@@ -17,12 +20,15 @@ import java.util.List;
|
||||
|
||||
public class InputProcessor {
|
||||
|
||||
private Vector3f[][] selfRotationVectorPaths; // Relative path of the motion data
|
||||
private List<Vector3f>[] selfRotationVectorPaths; // Relative path of the motion data
|
||||
//private Vector3f[][] selfRotationVectorPaths; // Relative path of the motion data
|
||||
private Vector3f[][] targetRotationVectorPaths; // Target path of the motion data
|
||||
|
||||
private final float sampleRate; // The sample rate of the motion sensor
|
||||
private float exerciseDurationInSeconds;
|
||||
|
||||
private float exerciseScore = 0.0F;
|
||||
|
||||
/**
|
||||
* This field is used to determine if the motion data is being recorded.
|
||||
* If this is the case, instead of functioning normally, the element
|
||||
@@ -45,7 +51,7 @@ public class InputProcessor {
|
||||
private IInputHandler motionDataConsumer;
|
||||
|
||||
private static final String[] REQUIRED_SENSOR_JSON_PROPERTIES =
|
||||
{"rotationX", "rotationY", "rotationZ", "type", "deviceId"};
|
||||
{"rotationX", "rotationY", "rotationZ", "deviceId"};
|
||||
|
||||
// The web server that listens for incoming motion data.
|
||||
private WebServer server;
|
||||
@@ -60,7 +66,9 @@ public class InputProcessor {
|
||||
* @param inputSampleRate The sample rate of the motion sensor.
|
||||
*/
|
||||
public InputProcessor(Vector3f[][] paths, float exerciseTime, float inputSampleRate) {
|
||||
selfRotationVectorPaths = new Vector3f[paths.length][(int) (exerciseTime * inputSampleRate)];
|
||||
this.selfRotationVectorPaths = new ArrayList[2];
|
||||
this.selfRotationVectorPaths[0] = new ArrayList<>();
|
||||
this.selfRotationVectorPaths[1] = new ArrayList<>();
|
||||
targetRotationVectorPaths = paths;
|
||||
|
||||
this.sampleRate = inputSampleRate;
|
||||
@@ -78,10 +86,11 @@ public class InputProcessor {
|
||||
if ( this.recordingMovement )
|
||||
throw new IllegalStateException("Cannot change exercise while recording movement.");
|
||||
|
||||
this.selfRotationVectorPaths = new Vector3f[2][(int) (exercise.exerciseTimeInSeconds * this.sampleRate)];
|
||||
this.targetRotationVectorPaths = new Vector3f[2][exercise.rightPath.getVectors().length];
|
||||
this.targetRotationVectorPaths[0] = exercise.leftPath.getVectors();
|
||||
this.targetRotationVectorPaths[1] = exercise.rightPath.getVectors();
|
||||
this.selfRotationVectorPaths[0] = new ArrayList<>();
|
||||
this.selfRotationVectorPaths[1] = new ArrayList<>();
|
||||
this.targetRotationVectorPaths = new Vector3f[2][exercise.rightPath.getAngleVectors().length];
|
||||
this.targetRotationVectorPaths[0] = exercise.leftPath.getAngleVectors();
|
||||
this.targetRotationVectorPaths[1] = exercise.rightPath.getAngleVectors();
|
||||
this.exerciseDurationInSeconds = exercise.exerciseTimeInSeconds;
|
||||
this.secondsPassed = 0.0D;
|
||||
this.lastTime = System.currentTimeMillis();
|
||||
@@ -101,7 +110,8 @@ public class InputProcessor {
|
||||
if (recording) {
|
||||
this.secondsPassed = 0.0D;
|
||||
this.lastTime = System.currentTimeMillis();
|
||||
this.selfRotationVectorPaths = new Vector3f[2][(int) (duration * this.sampleRate)];
|
||||
this.selfRotationVectorPaths[0] = new ArrayList<>();
|
||||
this.selfRotationVectorPaths[1] = new ArrayList<>();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -161,7 +171,8 @@ public class InputProcessor {
|
||||
try {
|
||||
|
||||
Log.i("MotionProcessor", "Time passed: " + this.secondsPassed + "s");
|
||||
Log.i("MotionProcessor", "Recording: " + this.recordingMovement + ", " + this.secondsPassed + " / " + this.recordingDurationInSeconds);
|
||||
if ( this.recordingMovement)
|
||||
Log.i("MotionProcessor", this.secondsPassed + " / " + this.recordingDurationInSeconds);
|
||||
Log.i("MotionProcessor", "Received packet data: " + data);
|
||||
|
||||
JsonElement json = JsonParser.parseString(data);
|
||||
@@ -178,9 +189,11 @@ public class InputProcessor {
|
||||
}
|
||||
|
||||
// Parse the data
|
||||
Vector3f rotation = new Vector3f(object.get("rotationX").getAsFloat(), object.get("rotationY").getAsFloat(), object.get("rotationZ").getAsFloat());
|
||||
Vector3f rotation = new Vector3f(
|
||||
object.get("rotationX").getAsFloat(),
|
||||
object.get("rotationY").getAsFloat(),
|
||||
object.get("rotationZ").getAsFloat());
|
||||
int deviceId = object.get("deviceId").getAsInt();
|
||||
String type = object.get("type").getAsString();
|
||||
|
||||
// Parse the retrieved data
|
||||
parseRotationVector(rotation, deviceId);
|
||||
@@ -203,7 +216,7 @@ public class InputProcessor {
|
||||
|
||||
|
||||
// Supposed index of the current rotation vector in the `rotationVectorPaths` array
|
||||
int selfIndex = (int) (secondsPassed * sampleRate);
|
||||
this.selfRotationVectorPaths[deviceId].add(rotation);
|
||||
|
||||
if ( this.recordingMovement && this.secondsPassed >= this.recordingDurationInSeconds) {
|
||||
// Do something with the recorded data.
|
||||
@@ -217,11 +230,8 @@ public class InputProcessor {
|
||||
Log.i("MotionProcessor", "Converted data: ");
|
||||
Log.i("MotionProcessor", converted);
|
||||
}
|
||||
motionDataConsumer.accept(rotation, deviceId);
|
||||
if (selfIndex >= selfRotationVectorPaths[deviceId].length || selfIndex < 0)
|
||||
return;
|
||||
|
||||
selfRotationVectorPaths[deviceId][selfIndex] = rotation;
|
||||
motionDataConsumer.accept(rotation, deviceId);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -234,38 +244,36 @@ public class InputProcessor {
|
||||
*/
|
||||
private String convertRecordedDataToString()
|
||||
{
|
||||
// First, remove empty entries
|
||||
StringBuilder pathBuilder = new StringBuilder();
|
||||
|
||||
int[] intBits = new int[3];
|
||||
char[] vectorChars = new char[12]; // 4 bytes per scalar, 12 chars per vector
|
||||
JsonArray jsonArray = new JsonArray();
|
||||
/*
|
||||
* Convert to JSON array in the following format:
|
||||
* [
|
||||
* { "deviceId": number, "data": [ [x, y, z], [x, y, z], ... ] },
|
||||
* ]
|
||||
*/
|
||||
|
||||
// Iterate over all devices. In the current instance, it's 2.
|
||||
for ( int deviceId = 0; deviceId < selfRotationVectorPaths.length; deviceId++) {
|
||||
for (Vector3f dataPoint : selfRotationVectorPaths[deviceId]) {
|
||||
if (dataPoint != null) {
|
||||
// Convert float to int bits for conversion to char
|
||||
intBits[0] = Float.floatToIntBits(dataPoint.x);
|
||||
intBits[1] = Float.floatToIntBits(dataPoint.y);
|
||||
intBits[2] = Float.floatToIntBits(dataPoint.z);
|
||||
JsonObject jsonDeviceObject = new JsonObject();
|
||||
jsonDeviceObject.addProperty("deviceId", deviceId);
|
||||
|
||||
// Convert int bits to char, in Big Endian order.
|
||||
// This is important for converting back to float later.
|
||||
for (int i = 0; i < 3; i++) {
|
||||
vectorChars[i * 4] = (char) (intBits[i] >> 24);
|
||||
vectorChars[i * 4 + 1] = (char) (intBits[i] >> 16);
|
||||
vectorChars[i * 4 + 2] = (char) (intBits[i] >> 8);
|
||||
vectorChars[i * 4 + 3] = (char) intBits[i];
|
||||
}
|
||||
// Data array
|
||||
JsonArray jsonDeviceDataArray = new JsonArray();
|
||||
|
||||
pathBuilder.append(vectorChars);
|
||||
}
|
||||
for ( Vector3f vector : selfRotationVectorPaths[deviceId]) {
|
||||
JsonArray jsonScalarArray = new JsonArray();
|
||||
jsonScalarArray.add(vector.x);
|
||||
jsonScalarArray.add(vector.y);
|
||||
jsonScalarArray.add(vector.z);
|
||||
jsonDeviceDataArray.add(jsonScalarArray);
|
||||
}
|
||||
// Add a separator between devices
|
||||
if ( deviceId < selfRotationVectorPaths.length - 1)
|
||||
pathBuilder.append(ExerciseManager.PATH_DELIMITER);
|
||||
jsonDeviceObject.add("data", jsonDeviceDataArray);
|
||||
|
||||
jsonArray.add(jsonDeviceObject);
|
||||
}
|
||||
return pathBuilder.toString();
|
||||
return jsonArray.toString();
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -288,6 +296,13 @@ public class InputProcessor {
|
||||
this.motionDataConsumer = consumer;
|
||||
}
|
||||
|
||||
/**
|
||||
* Function for getting the combined (average) error value of both sensors.
|
||||
public double getCombinedError()
|
||||
{
|
||||
|
||||
}*/
|
||||
|
||||
/**
|
||||
* Function for getting the error offsets of the user's path compared to the
|
||||
* target path at a given point in time.
|
||||
@@ -300,7 +315,7 @@ public class InputProcessor {
|
||||
*/
|
||||
public double getError(int sensorId, float time) {
|
||||
|
||||
// Ensure the sensor ID is within the bounds of the array
|
||||
/*// Ensure the sensor ID is within the bounds of the array
|
||||
if (sensorId < 0 || sensorId >= selfRotationVectorPaths.length)
|
||||
return 0.0d;
|
||||
|
||||
@@ -316,7 +331,7 @@ public class InputProcessor {
|
||||
this.targetRotationVectorPaths[sensorId][targetIndex] != null
|
||||
) {
|
||||
return this.selfRotationVectorPaths[sensorId][selfIndex].distance(this.targetRotationVectorPaths[sensorId][targetIndex]);
|
||||
}
|
||||
}*/
|
||||
return 0.0d;
|
||||
}
|
||||
|
||||
|
@@ -1,37 +0,0 @@
|
||||
package com.example.fitbot;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
|
||||
import com.example.fitbot.util.path.GesturePath;
|
||||
import com.example.fitbot.util.path.PathSegment;
|
||||
|
||||
import org.joml.Vector3f;
|
||||
import org.junit.Test;
|
||||
|
||||
public class PathSegmentTest {
|
||||
|
||||
@Test
|
||||
public void testPathSegment() {
|
||||
// Test the PathSegment class
|
||||
Vector3f[] vectors = new Vector3f[2];
|
||||
vectors[0] = new Vector3f(0, 0, 0);
|
||||
vectors[1] = new Vector3f(1, 1, 1);
|
||||
GesturePath path = new GesturePath(vectors);
|
||||
PathSegment[] segments = path.getSegments();
|
||||
assertEquals(1, segments.length);
|
||||
assertEquals(new Vector3f(0, 0, 0), segments[0].getStart());
|
||||
assertEquals(new Vector3f(1, 1, 1), segments[0].getEnd());
|
||||
assertEquals(new Vector3f(0.5f, 0.5f, 0.5f), segments[0].interpolate(0.5));
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
public void test_pathSegmentInterpolation() {
|
||||
Vector3f start = new Vector3f(0, 0, 0);
|
||||
Vector3f end = new Vector3f(1, 1, 1);
|
||||
PathSegment segment = new PathSegment(start, end);
|
||||
assertEquals(new Vector3f(0.5f, 0.5f, 0.5f), segment.interpolate(0.5));
|
||||
}
|
||||
|
||||
|
||||
}
|
@@ -20,8 +20,9 @@ classDiagram
|
||||
|
||||
Raspberry Pi --> NodeJS
|
||||
Raspberry Pi --> Database
|
||||
NodeJS <--> Android Application : Request exercise data from database
|
||||
NodeJS <--> Android Application : Request exercise data from database. Send ip adress to cache
|
||||
Database <--> NodeJS : Database queries
|
||||
NodeJS --> ESP8266 : Get pepper ip
|
||||
|
||||
|
||||
ESP8266 --> Android Application : Send rotation data via WiFi to\n Pepper Web Server
|
||||
@@ -48,6 +49,7 @@ namespace Server {
|
||||
class NodeJS {
|
||||
+MariaDB
|
||||
+Handle requests
|
||||
+Cache pepper IP
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -0,0 +1,88 @@
|
||||
## Pepper Abstraction Design
|
||||
|
||||
---
|
||||
|
||||
### Introduction
|
||||
|
||||
The Pepper robot is a complex system that can be controlled by a variety of different actions. To make the system more
|
||||
manageable, we've decided implement abstraction and encapsulation in the classes related to Pepper controls.
|
||||
This way, we can easily add new action events in the future.
|
||||
All these classes inherit from the `AbstractPepperActionEvent` class.
|
||||
|
||||
### Problems
|
||||
|
||||
1. The Pepper robot functions with a system that only allows one action to be executed at a time, per action category.
|
||||
This means that, for example, when two speech actions are executed at the same time, the application will crash due
|
||||
to a `RuntimeException` being thrown. Due to this fact, whenever the execution of multiple processes overlap,
|
||||
the application will crash.
|
||||
|
||||
2. Besides the first problem, for the Pepper robot to be able to execute any actions, it is required to have a
|
||||
QiContext available. This context is only provided in a class that extends the `RobotLifecycleCallbacks` class.
|
||||
This means, that whenever the class does not extend this class, the robot will be unable to execute any actions.
|
||||
|
||||
### Solution
|
||||
|
||||
To prevent the application from crashing, we've decided to implement a queue system in the `Pepper` class.
|
||||
This system allows us to queue any new actions that need to be executed whenever another action is already
|
||||
being executed. This way, we can prevent the application throwing a `RuntimeException` and thus crashing.
|
||||
|
||||
To tackle the second problem, we've decided to implement a system where the Pepper class has a global variable, which
|
||||
holds the current QiContext. This means, that whenever a user decides to execute an action, and no current QiContext
|
||||
is available, the action will be queued until a QiContext is available. This means that we can queue several actions
|
||||
at once without any exceptions being thrown.
|
||||
|
||||
### Diagrams
|
||||
|
||||
#### Class Diagram
|
||||
|
||||
```mermaid
|
||||
classDiagram
|
||||
class Pepper {
|
||||
-pepperActionEventQueue : ConcurrentLinkedQueue<AbstractPepperActionEvent>
|
||||
-isAnimating : AtomicBoolean
|
||||
-isSpeaking : AtomicBoolean
|
||||
|
||||
+latestContext : QiContext
|
||||
+addToEventQueue(AbstractPepperActionEvent event)
|
||||
+provideQiContext(QiContext context)
|
||||
|
||||
-processEventQueue()
|
||||
}
|
||||
class AbstractPepperActionEvent {
|
||||
+getAction() EPepperAction
|
||||
}
|
||||
class PepperSpeechEvent {
|
||||
+phrase : String
|
||||
+locale : Locale
|
||||
+PepperSpeechEvent(String phrase, Locale locale)
|
||||
+getSay(QiContext context) Say
|
||||
}
|
||||
class PepperAnimationEvent {
|
||||
+PepperAnimationEvent(String animationName)
|
||||
+PepperAnimationEvent(String animationName, IAnimationCompletedListener listener)
|
||||
+getAnimation(QiContext context) Animate
|
||||
+animationName : String
|
||||
+IAnimationCompletedListener : IAnimationCompletedListener
|
||||
}
|
||||
Pepper <|-- AbstractPepperActionEvent
|
||||
PepperSpeechEvent <|-- AbstractPepperActionEvent
|
||||
PepperAnimationEvent <|-- AbstractPepperActionEvent
|
||||
```
|
||||
|
||||
#### Queue System in Pepper class
|
||||
|
||||
```mermaid
|
||||
|
||||
graph LR
|
||||
subgraph "Pepper Class - Action Queue System"
|
||||
speak[say(String phrase)\nPublic\nCreate PepperSpeechEvent] --Call method--> addQueue
|
||||
animate[animate(String animationName)\nPublic\nCreate PepperAnimationEvent] --Call method--> addQueue
|
||||
addQueue[addToEventQueue(AbstractPepperActionEvent event)\nPublic\nAdd provided event to event queue] --Add to queue--> queue[Event Queue\nPrivate\nQueue containing all events that\nneed to be executed]
|
||||
|
||||
addQueue --Call method--> handleQueue[processEventQueue()\nPrivate\nCheck whether there is a context\navailable, and whether an event\nis currently being executed.\nExecutes the next event in the Queue]
|
||||
|
||||
queue <.-> handleQueue
|
||||
|
||||
provideCtx[provideQiContext(QiContext context)\nPublic\nSets global QiContext variable\nto provided context. If the context \nis not null,process the event queue] --Sets global QiContext variable--> handleQueue
|
||||
end
|
||||
```
|
@@ -1,9 +0,0 @@
|
||||
|
||||
## Expert review #1
|
||||
|
||||
### Document as you go
|
||||
Documenteer alle problemen die voorkomen bij het project en noteer de
|
||||
oplossingen voor deze problemen. Dit kan bijvoorbeeld d.m.v. een command die
|
||||
cache files verwijderd, of op welke manier je een project fixt. Dit kan toekomstige
|
||||
problemen voorkomen.
|
||||
|
@@ -12,6 +12,9 @@ Deze classes inheriten `AbstractPepperActionEvent`.
|
||||
|
||||
K2: Gebruikers Test
|
||||
|
||||
( Maak een fictief persoon die de applicatie zou kunnen gebruiken, om erachter te komen
|
||||
wat ze zouden willen )
|
||||
|
||||
---
|
||||
|
||||
Wij hebben gezamenlijk gecommuniceerd over het plan, echter is alleen
|
||||
@@ -32,6 +35,14 @@ Zie bestand 'infrastructure.md'
|
||||
|
||||
K4 - Ontwerp embedded system
|
||||
|
||||
Documenteer het queue systeem van de Pepper class
|
||||
Maak een mermaid graph LR diagram
|
||||
|
||||
---
|
||||
|
||||
Zie '/documentation/hardware/sensors'
|
||||
|
||||
K5 - Embedded Software Schrijven
|
||||
|
||||
Feedback:
|
||||
- Is in principe K1,
|
||||
|
@@ -0,0 +1,72 @@
|
||||
### Gebruikersonderzoek Personage
|
||||
|
||||
---
|
||||
|
||||
Gezien de huidige omstandigheden is het nogal lastig om actuele feedback te verkrijgen
|
||||
van onze doelgroep. Dit betekent dat we een fictief karakter moeten ontwikkelen die als onze
|
||||
gebruiker functioneert. Hierbij moeten we zo veel mogelijk parameters vaststellen die
|
||||
overeen kunnen komen met een potentiele gebruiker.
|
||||
|
||||
Om hiermee te beginnen is het noodzakelijk om eerst deze parameters vast te stellen.
|
||||
|
||||
Deze zijn als volgt:
|
||||
|
||||
- Bedraagt een leeftijd van tussen de 50 en 70 jaar
|
||||
- Woont in een verzorgingstehuis
|
||||
- Heeft enigzins last van eenzaamheid
|
||||
- Heeft moeite met lichamelijke activiteiten
|
||||
- Grote kans op slecht zicht
|
||||
|
||||
Nu deze parameters vastgesteld zijn kunnen we een fictief personage ontwikkelen die als onze
|
||||
gebruiker functioneert. Dit personage zal de naam 'Henk' dragen.
|
||||
|
||||
Vervolgens is het handig om de applicatie te introduceren.
|
||||
De applicatie zal als volgt geintroduceerd worden:
|
||||
|
||||
"Onze applicatie is een interactief programma waarmee u samen fitness activiteiten kunt
|
||||
verrichten met een virtuele assistent genaamd Pepper. Pepper zal u begeleiden door de
|
||||
verschillende oefeningen en u helpen met het uitvoeren van de oefeningen. Iedere
|
||||
oefening zal worden begeleid door een stem die u verteld wat u moet doen en hoe u dit
|
||||
moet doen. Daarnaast zal Pepper u ook feedback geven over hoe goed u de oefeningen
|
||||
uitvoert."
|
||||
|
||||
Een fictieve reactie op alle gestelde voorwaarden kan zijn als volgt:
|
||||
|
||||
#### Introductie
|
||||
|
||||
Goedendag, ik ben Henk en ik ben 67 jaar oud. Ik woon al een aantal jaar in verzorgingstehuis genaamd Amstelhuis.
|
||||
Helaas heb ik de laatste tijd wat meer last van mijn gezondheid, waardoor ik minder goed kan bewegen. Hierdoor voel ik
|
||||
me soms wat eenzaam en verveel ik me wel eens.
|
||||
|
||||
Ik ben altijd erg actief geweest, dus toen ik hoorde over de Pepper FitBot app was ik meteen enthousiast. De
|
||||
verpleegster vertelde me dat de Pepper app misschien wel kan helpen om mijn conditie op peil te houden en om me minder
|
||||
eenzaam te voelen. Dus ik ben erg benieuwd wat de FitBot app allemaal kan!
|
||||
|
||||
#### Gebruikservaring
|
||||
|
||||
Eerste indruk: Toen ik de FitBot app voor het eerst gebruikte, vond ik het erg leuk dat Pepper me begeleidde door de
|
||||
oefeningen. Hij is duidelijk en behulpzaam, en hij maakt er een gezellige sfeer van.
|
||||
|
||||
##### Gebruiksgemak
|
||||
De FitBot app is erg gebruiksvriendelijk. De app is eenvoudig te bedienen en de instructies zijn
|
||||
duidelijk. Ook vind ik het fijn dat de app mijn voortgang bijhoudt.
|
||||
|
||||
##### Functionaliteit
|
||||
De FitBot app heeft veel leuke en nuttige functies. Ik vind het vooral leuk dat er verschillende
|
||||
oefeningen zijn voor verschillende niveaus.
|
||||
|
||||
##### Motivatie
|
||||
Pepper is een geweldige motivator. Hij moedigt me aan om door te gaan en hij geeft me complimenten als ik
|
||||
goed bezig ben. Hierdoor ben ik gemotiveerder om te blijven sporten.
|
||||
|
||||
##### Verbeterpunten
|
||||
|
||||
- Het zou leuk zijn als er meer oefeningen aan de app worden toegevoegd. Zo zou ik graag meer oefeningen willen doen voor
|
||||
mijn spierkracht en lenigheid.
|
||||
- De uitleg van de oefeningen is soms een beetje kort. Het zou fijn zijn als deze wat uitgebreider zou zijn.
|
||||
- Het zou leuk zijn als er de mogelijkheid was om samen met anderen te sporten via de app. Zo zou ik bijvoorbeeld met
|
||||
mijn kleinkinderen kunnen videobellen terwijl we allebei dezelfde oefeningen doen.
|
||||
|
||||
Al met al ben ik erg tevreden over de FitBot app. Het is een leuke en effectieve manier om te sporten. Pepper is een
|
||||
fijne motivator en de app heeft veel nuttige functies. Ik zou de FitBot app zeker aanbevelen aan andere mensen in het
|
||||
verzorgingstehuis.
|
61
docs/personal-documentation/Luca/infrastructure-design.md
Normal file
61
docs/personal-documentation/Luca/infrastructure-design.md
Normal file
@@ -0,0 +1,61 @@
|
||||
### Infrastructure Design
|
||||
|
||||
---
|
||||
|
||||
As for our project, we've made the following design choices for our infrastructure.
|
||||
We've decided to implement a NodeJS server on a Raspberry Pi, which will handle the requests for retrieving exercises.
|
||||
This server will communicate with a MariaDB database, which contains the exercise data.
|
||||
The Pepper robot will host a web server, which will handle the incoming rotational data from an ESP8266.
|
||||
This data will then be processed by a motion processor class, `InputProcessor`, which will compare the rotational data
|
||||
to the data of the current exercise and show how well the user is performing.
|
||||
|
||||
Down below is a visual representation of how this infrastructure will look like.
|
||||
|
||||
### General Infrastructure Diagram
|
||||
```mermaid
|
||||
|
||||
graph TB
|
||||
subgraph "Raspberry Pi"
|
||||
server[NodeJS Server\n\nHandles requests for\nretrieving exercises]
|
||||
db[Database - MariaDB\n\nContains exercise data]
|
||||
server --Fetch database entry--> db
|
||||
db --Return retrieved entry--> server
|
||||
|
||||
end
|
||||
|
||||
subgraph "Pepper Robot"
|
||||
webServer[Web Server\n\nHandles incoming rotational data\nfrom ESP8266]
|
||||
motionProcessor[Motion Processor\n\nProcesses rotational data,\ncompares it to the current exercise\nand shows the statistics on the screen]
|
||||
ui[User Interface\n\nShows the current exercise,\nhow to perform it and the\nstatistics of the user's performance]
|
||||
motionProcessor --Send HTTP GET for Exercise--> server
|
||||
server --Send exercise data\nin JSON format--> motionProcessor
|
||||
webServer --Process rotational data--> motionProcessor
|
||||
motionProcessor --Show statistics\non the UI--> ui
|
||||
end
|
||||
|
||||
subgraph "Motion Sensing Device"
|
||||
esp[ESP8266\n\nMeasures sensor data\nand sends it to the web server]
|
||||
gyro[Gyroscope\n\nMeasures rotational data\n(Rx, Ry, Rz)]
|
||||
esp --Send rotational data\nto Pepper Web Server--> webServer
|
||||
gyro <---> esp
|
||||
end
|
||||
|
||||
```
|
||||
|
||||
### Database Diagram
|
||||
|
||||
For the design of our database, we've decided to only add a single table named `Exercise`.
|
||||
This table contains all the information needed for the exercises.
|
||||
```mermaid
|
||||
classDiagram
|
||||
class Exercise {
|
||||
+ExerciseId : INT
|
||||
+Name : VARCHAR
|
||||
+Description : VARCHAR
|
||||
+ShortDescription : VARCHAR
|
||||
+ImageURL : VARCHAR
|
||||
+VideoURL : VARCHAR
|
||||
+MuscleGroup : VARCHAR
|
||||
+Path : VARCHAR
|
||||
}
|
||||
```
|
Reference in New Issue
Block a user