33 Commits

Author SHA1 Message Date
Yannick van Etten
466a8659d0 Code toegevoegd voor de sgp32 sensor zodat deze wordt geïnitialiseerd 2025-01-14 17:43:27 +01:00
Yannick van Etten
523ccd87e3 Removed callback line 2024-12-18 15:07:02 +01:00
Yannick van Etten
c905bda662 Removed network information 2024-12-18 13:23:13 +01:00
Yannick van Etten
d865a50951 Kleine spellingsfouten veranderd en de callback weggehaald 2024-12-17 17:10:40 +01:00
Yannick van Etten
d7a643460c Begin gemaakt aan data verzenden via mqtt websocket 2024-12-17 16:51:50 +01:00
Yannick van Etten
f021ebebcb Merge branch '22-als-developer-wil-ik-een-weerstation-hebben-op-de-robot-waarmee-ik-data-van-de-omgeving-kan' of gitlab.fdmci.hva.nl:technische-informatica-sm3/ti-projectten/rooziinuubii79 into 22-als-developer-wil-ik-een-weerstation-hebben-op-de-robot-waarmee-ik-data-van-de-omgeving-kan 2024-12-16 14:35:28 +01:00
Yannick van Etten
32e0583c1b Documentatie gemaakt de behuizing van de sensoren 2024-12-16 14:35:05 +01:00
Yannick van Etten
c0cf6f1360 De data in een json payload gezet die vervolgens verstuurt wordt naar de raspberry pi 2024-12-12 16:40:24 +01:00
Yannick van Etten
730d2b47b8 Reconnect functie toegevoegd 2024-12-12 16:09:40 +01:00
Yannick van Etten
4c5cea71b2 Restructure want de vorige was niet goed gegaan 2024-12-10 13:59:39 +01:00
Yannick van Etten
dcd3f1006d restructure en code toegevoegd voor mqtt 2024-12-10 13:30:42 +01:00
Yannick van Etten
4f79695d9c Foto toegevoegd van het aansluitschema 2024-11-29 14:04:12 +01:00
Yannick van Etten
b2d233386c uitleg toegevoegd voor de MQ5 gassensor 2024-11-29 13:52:27 +01:00
Yannick van Etten
160b43f49e nog stukje toegevoegd aan de tvoc/eco2 sensor uitleg 2024-11-19 15:26:46 +01:00
Yannick van Etten
afe8ae3357 uitleg toegevoegd van de tvoc/eco2 sensor toegevoegd 2024-11-19 15:23:40 +01:00
Yannick van Etten
66d5444488 Uitleg van de DHT11 sensor toegevoegd aan sensoronderzoek 2024-11-19 15:07:17 +01:00
Yannick van Etten
bcbd6743fb Added comment 2024-11-18 11:16:53 +01:00
Yannick van Etten
9997bf2319 Removed double code 2024-11-18 11:12:02 +01:00
Yannick van Etten
0ae0b83e4b Merged m5 code into sensor code 2024-11-18 11:09:13 +01:00
Yannick van Etten
db8758e1e5 removed unnecessary code 2024-11-13 14:45:27 +01:00
Yannick van Etten
08dff8bbc1 changed test code for the m5stack sensor 2024-11-13 14:37:14 +01:00
Yannick van Etten
f0260c1a91 changed file location 2024-11-13 13:46:04 +01:00
Yannick van Etten
40d601a35b Name change and small changes 2024-11-13 13:02:22 +01:00
Yannick van Etten
3525479b17 Added comments 2024-11-11 10:53:10 +01:00
Yannick van Etten
2e08bf7e74 Removed baseline 2024-11-11 09:19:08 +01:00
Yannick van Etten
12c25b33a7 Added test code for M5 sensor. (work in progress) 2024-10-31 16:27:30 +01:00
Yannick van Etten
5b27974d5a Added comments 2024-10-31 15:27:17 +01:00
Yannick van Etten
f4ce50db18 Name change 2024-10-31 15:12:00 +01:00
Yannick van Etten
9bd9b6c4b2 Added code for the MQ5 gas sensor 2024-10-30 18:04:58 +01:00
Yannick van Etten
c08f1e434c rewrote DHT11 code 2024-10-30 15:35:03 +01:00
Yannick van Etten
fb35d2a84d Code toegevoegd voor de DHT11 sensor 2024-10-29 15:17:27 +01:00
Yannick van Etten
b67c51e56b Documentatie uitgebreid 2024-10-29 14:06:29 +01:00
Yannick van Etten
8b03438d47 Start Sensoronderzoek 2024-10-28 15:23:32 +01:00
61 changed files with 1263 additions and 2556 deletions

12
.gitignore vendored
View File

@@ -19,15 +19,3 @@ src/C++/Driver/Makefile
src/C++/Driver/log
build/
venv
src/C++/MQTT/CMakeFiles
src/C++/MQTT/Makefile
src/C++/MQTT/CMakeCache.txt
src/C++/MQTT/cmake_install.cmake
src/Python/flask/web/_pycache_
venv
build/
log
CMakeFiles/
Makefile
CMakeCache.txt
cmake_install.cmake

View File

@@ -19,9 +19,14 @@ Acceptatie criteria zijn specifieke eisen waaraan de User Story moet voldoen. De
- [ ] Acceptatiecriterium 2
- [ ] ...
**Definition of Done: Hardware**
**Definition of Done**
- [ ] Alle acceptatiecriteria van de user story zijn afgevinkt.
- [ ] Je werk is gedocumenteerd.
- [ ] Je hebt testen uitgevoerd.
- [ ]
- [ ] Je hebt volgens de HBO-ICT werkstandaarden gewerkt (Agile, GitLab, sprint boards, sprint planning, HBO-ICT conventions etc.)
- [ ] Het werk is technisch gedocumenteerd in het Engels en relevant voor collega-ontwikkelaars. Denk o.a. aan ERD, UML, testen en testresultaten.
- [ ] Het leerproces is beschreven in Standaardnederlands.
- [ ] Het werk is gereviewd door een peer.
- [ ] Het UX/UI gedeelte van de applicatie voldoet aan het Think-Make-Check (TMC) principe.
- [ ] De code is functioneel getest op fouten.
- [ ] De code werkt zonder fouten bij normaal gebruik.
- [ ] De webapplicatie dient zowel op mobiele- als desktop-apparaten gebruikt te kunnen worden.

View File

@@ -1,10 +0,0 @@
# Requirements
1. Het compileerd op x86 en ARM architechturen
2. Geen dubbele code
3. commentaar bij lastige code
4. Doxygen comments bij elke functie, behalve als het duidelijk is in de functienaam
5. Hou je code leesbaar
6. Geen dode code
7. Gebruik TODO comments (TODO TREE)
8.

View File

@@ -0,0 +1,28 @@
# Sensor behuizing
Voor de sensoren op onze Kobuki wouden wij graag een behuizing zodat deze sensoren niet los liggen op de Kobuki.
Deze behuizing had een paar eisen en die eisen waren als volgt
- Hij moet klein zijn zodat hij niet veel ruimte in neemt op de Kobuki.
- De behuizing moet makkelijk vast te maken zijn aan de Kobuki.
- In de behuizing moet een esp32 passen en de 3 sensoren.
- De behuizing moet makkelijk uit elkaar te halen zijn zodat als we onderhoud moeten plegen dit makkelijk kan.
Met deze eisen zijn we uiteindelijk een behuizing gaan maken in onshape.
Onshape is gratis ontwerp software wat te gebruiken is via je browser.
Hierdoor hoef je dus geen applicatie te runnen op je computer en kan je op elk apparaat inloggen om zo gemakkelijk door te gaan aan je ontwerp.
Ik (Yannick) heb voor deze software gekozen omdat ik deze software al veel vaker heb gebruikt en hier dus al bekend mee ben.
Uiteindelijk zijn we op het volgende design uitgekomen.
![Afbeelding van de behuizing](images/Behuizingfoto1.png)
![Afbeelding van de behuizing van bovenaf](images/Behuizingfoto2.png)
Wij hebben gekozen voor dit design omdat dit de breedte en lengte heeft van een esp32 dus de esp past precies waardoor wij hem niet nog extra vast hoeven te zetten.
Er zitten gaten in de zijkant van het bakje voor de kabel en voor een 5 volt kabel voor de MQ5 sensor.
De dht11 sensor past er precies in en deze blijft daardoor precies vast zitten.
Voor de M5stack sensor is er een gat gemaakt zodat deze kabel erdoorheen past en vervolgens wordt deze sensor op de bovenkant van de behuizing vastgeplakt.
Voor de MQ5 sensor is een gat gemaakt waar de sensor door heen kan en het printplaatje wordt aan de onderkant vast gemaakt met stevige M3 tape.
In de onderkant van de behuizing zitten 2 gaten hiermee kan de behuizing goed vastgemaakt worden aan de kobuki.
De onderkant en de bovenkant van de behuizing zijn makkelijk uit elkaar te halen omdat deze doormiddel van 4 sterke magneten aan elkaar vast zitten.
Hierdoor is het ook makkelijk om onderhoud te plegen omdat het bakje door de magneten makkelijk uit elkaar te halen is maar niet zo makkelijk dat hij door trillingen los kan komen.

View File

@@ -0,0 +1,79 @@
# Sensor onderzoek
In dit bestand gaan we onderzoek doen naar de sensoren die we willen gebruiken op de Kobuki.
Hierin gaan we meerdere sensoren vergelijken met elkaar en kijken welke wij het beste kunnen gebruiken voor ons project.
## Probleem
Voor ons project moeten wij een manier vinden om gassen/stoffen te detecteren zodat je in een gebouw weet waar je niet veilig naartoe kan.
## De vraag
> Welke sensoren kunnen wij het beste gebruiken om schadelijke gassen/stoffen te vinden in een gebouw ?
## Voorwaarden
De voorwaarden waar de sensors aan moeten voldoen zijn:
- De sensoren moeten op de kobuki passen.
- We moeten zo weining mogelijk sensoren gebruiken zodat we genoeg plek over houden voor andere onderdelen van de Kobuki.
## Hoe aansluiten
Wij gaan deze sensoren aansluiten op een esp32 en deze laten wij via MQTT de gegevens doorsturen naar de raspberry pi.
## De sensoren.
Wij zijn uitgekomen op 3 sensoren.
- De dht11 sensor
- De tvoc/eC02 Gas Unit.
- Gravity: Elektrochemische zuurstof-/O2-sensor (0-25%Vol, I2C) SEN0322
- Gassensor MQ-5 module (OT2018-D55)
Wij hebben voor de Dht11 en de tvoc/eC02 gas unit gekozen omdat wij deze bij james konden lenen. En wij hebben gekozen voor de Gassensor MQ-5 module (OT2018-D55) Omdat dit een mooie kleine sensor is die wij makkelijk kwijt kunnen op de kobuki.
Voor de o2 sensor hebben wij gekozen voor de Gravity: Elektrochemische zuurstof-/O2-sensor (0-25%Vol, I2C) SEN0322. Deze sensor is helaas op het moment van schrijven (29-10-2024) niet op voorraad dus deze sensor kunnen wij helaas nog niet toevoegen. Zodra deze sensor op voorraad is zal ik deze bestellen en aan de esp toevoegen.
## Sensor uitleg
#### Dht11
De dht11 is een eenvoudige en goedkope sensor die wordt gebruikt om de temperatuur en luchtvochtigheid te meten.
De sensor bevat de volgende onderdelen om te werken:
- Een thermistor : Dit is een component die temperatuur meet door variaties in elektronische weerstand.
- Een capacitieve vochtigheidssensor : Deze meet de relatieve luchtvochtigheid door de verandering in het materiaal tussen de condensatorplaten te meten. Deze verandering gebeurt door de waterdamp in de lucht.
- Een geïntegreerde microcontroller : Deze microcontroller verwerkt de gegevens van de sensoren en zet deze om in een digitaal signaal.
Het meetbereik van de sensor is 0 tot 50 graden voor temperatuur en voor de luchtvochtigheid is het 20 tot 90%
Hierbij is de temperatuur tot ±2 graden nauwkeurig en de luchtvochtigheid ±5 procent.
De DHT11 kan aangesloten worden op een 3.3 of 5 volt voeding.
Wij kunnen deze sensor dus zonder problemen compleet aansluiten op de esp32s3
#### Tvoc/eC02 Gas Unit
De M5Stack TVOC/eCO2-Gassensensor-eenheid (SGP30) is een compacte sensor ontwikkeld om vluchtige organische stoffen (TVOC) en schijnbare CO₂-concentraties (eCO2) te meten.
Deze component maakt gebruik van de SGP30-sensor van Adafruit
De SGP30 is gebaseerd op een metal-oxide (MOX) halfgeleidertechnologie.
Deze technologie detecteert veranderingen in elektrische weerstand bij blootstelling aan vluchtige organische stoffen (VOC's),
zoals ethanol en aceton.
De sensor bevat ingebouwde algoritmes om de gemeten VOC waarden om te zetten in tvoc en eco2.
- TVOC : Dit is de totale concentratie vluchtige organische stoffen.
- ECO2 : Dit is een geschatte koolstofdioxideconcentratie.
Dit is een schatting op basis van de VOC metingen.
Deze sensor werkt op 3.3 en 5 volt dus ook voor deze sensor kunnen wij de esp32s3 gebruiken.
#### MQ5 Gassensor
De MQ5-gassensor is een veelgebruikte sensor voor het detecteren van brandbare gassen, zoals aardgas (methaan), vloeibaar petroleumgas (LPG), waterstof en koolmonoxide. Het werkt op basis van veranderingen in elektrische weerstand van het sensorelement wanneer het wordt blootgesteld aan specifieke gassen.
De kern van de MQ5 sensor is een chemisch gecoat metalen oxide (meestal tinoxide).
Dit materiaal reageert op de aanwezigheid van brandbare gassen.
Wanneer de sensor gasdeeltjes detecteert, reageren deze met zuurstofionen op het oppervlak van het tinoxide. Deze reactie veroorzaakt een verandering in de elektrische geleidbaarheid (weerstand) van het materiaal.
De verandering in weerstand wordt door een elektronisch circuit omgezet in een elektrisch signaal dat de concentratie van gas vertegenwoordigt.
De MQ5 sensor heeft ook een ingebouwde verwarmingsspiraal die het sensorelement op een hoge temperatuur houdt (ongeveer 300-500°C). Deze temperatuur zorgt ervoor dat gassen efficiënt reageren met het tinoxide-oppervlak.
Het enige nadeel van deze sensor is dat hij niet selectief is dus de sensor kan geen onderscheid maken tussen bijvoorbeeld methaan en lpg.
## Aansluitschema
![Afbeelding aansluitschema](images/Aansluitschema_sensors.png)
Hierboven is te zien hoe wij de sensoren hebben aangesloten op de esp32.

BIN
docs/explanation/image.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

View File

@@ -1,21 +1,22 @@
# **Projectplan - robot voor Gevaarlijke Omgevingen**
### Projectbeschrijving
### Projectbescrhijving
Het project betreft de ontwikkeling van een robot voor gevaarlijke omgevingen. De robot is bedoeld om gevaarlijke situaties te verkennen en in kaart te brengen. De robot is uitgerust met verschillende sensoren en daar gaan we zelf nog een camera en andere sensoren op zetten om de omgeving te verkennen. De data wordt verzameld en geanalyseerd om een beeld te krijgen van de situatie. De robot kan worden ingezet in verschillende situaties, zoals branden, instortingen en andere gevaarlijke situaties.
### 1. Organisatorische Context
Bij de ontwikkeling van de robot zijn verschillende factoren van belang. Maatschappelijke veranderingen zoals duurzaamheid en de toenemende vraag naar technologische oplossingen voor gevaarlijke werkomgevingen spelen een grote rol. De robot kan worden ingezet voor gevaarlijke situaties waar bijvoorbeeld geen mensen naar binnen kunnen.
**Vervolgstappen:**
- Focus op duurzaamheid en herbruikbaarheid.
- Focus op duurzaamheid en herbruikbaarheid.
- Inzetten op veiligheid en efficiëntie.
### 2. Ethiek
Ethische vragen staan centraal bij de ontwikkeling van de robot. Er moet rekening gehouden worden met de veiligheid van de gegevens van gebruiker. Het minimaliseren van de milieu-impact door duurzame materialen te gebruiken zoals hout en metaal. Privacy speelt ook een belangrijke rol. De verzamelde data moet veilig worden gebruikt en opgeslagen en het moet de EU privacy richtlijnen volgen.
Ethische vragen staan centraal bij de ontwikkeling van de robot. Er moet rekening gehouden worden met de veiligheid van de gegevens van gebruiker. Het minimaliseren van de milieu-impact door duurzame materialen te gebruiken zoals hout en metaal. Privacy speelt ook een belangrijke rol. De verzamelde data moet veilig worden gebruikt en opgeslagen en het moet de EU privacy richtlijnen volgen.
**Punten waar we rekening mee moeten houden:**
@@ -26,6 +27,7 @@ Ethische vragen staan centraal bij de ontwikkeling van de robot. Er moet rekenin
Het project wordt uitgevoerd vanuit een duidelijk plan waar elke sprint een deel van het project centraal staat. Driver bouwen, testen en verbindingen leggen tussen elk gedeelte van het project. We gebruiken de Agile methodiek dus alles kan nog veranderen. Hierbij moeten wij dus ook rekening houden met de etische en organisatorische aspecten, zoals duurzaamheid en veiligheid.
### Aanpak
**Werk methode:** Gebruik van Agile projectmanagement voor flexibiliteit.
@@ -34,4 +36,4 @@ Het project wordt uitgevoerd vanuit een duidelijk plan waar elke sprint een deel
**Duurzaamheid & Verbetering:** Zorgen dat we duurzame materialen kunnen gebruiken en dat we de robot kunnen blijven verbeteren.
Deze aanpak zorgt ervoor dat het project niet alleen technisch succesvol is, maar ook voldoet aan ethische en organisatorische normen.
Deze aanpak zorgt ervoor dat het project niet alleen technisch succesvol is, maar ook voldoet aan ethische en organisatorische normen.

View File

@@ -1,7 +1,6 @@
# Wat gaan we maken
## Sensoren
* Camera
* GPS module
* Temparatuur sensor
@@ -13,27 +12,21 @@
## Wat gaan we met de sensoren doen?
### Camera
De camera word gebruikt om foto's te maken in de omgeving in het geval van informatie verkrijgen voor als de robot bijvoorbeeld vast zit, geeft ook optie om informatie te krijgen zonder op de plek zelf te zijn.
### GPS module
De GPS module word gebruikt om de locatie van de robot te bepalen en aan te geven waar bijzonderheden bevinden.
### Temparatuur, TVOC en ECO2 sensor
Deze sensoren zijn bedoeld om de omgeving te meten en te kijken of de omgeving veilig is voor mensen om in te gaan.
### LDR sensor
De LDR sensor word gebruikt om de lichtsterkte te meten en te kijken of er een lamp op de robot aan moet gaan voor de camera.
### Time of Flight sensor
De Time of Flight sensor word gebruikt om de afstand te meten tussen de robot en de muur, zodat de robot niet tegen de muur aan botst.
## Het project
Bij brand of op fabrieksterreinen met gevaarlijke stoffen kan het nodig zijn om een verkenning te
doen van een verdachte omgeving. Het is dan niet verstandig om mensen naar binnen te sturen, in
die gevallen vallen de hulpdiensten terug om een verkenningsrobot. Het doel van het project is het

1
docs/home/home.md Normal file
View File

@@ -0,0 +1 @@
# home

5
docs/home/stappenplan.md Normal file
View File

@@ -0,0 +1,5 @@
- [x] Kobuki werkt met driver.
- [x] Ik kan de data uitlezen.
- [ ] Data wordt correct weergegeven.
- [ ] Ik kan de data laten zien in op de website.
- [ ] Ik kan de kobuki besturen vanaf de website.

View File

@@ -1,20 +0,0 @@
# Daily stand ups
??? note "Daily Stand-ups Sprint 4"
| Day | Submitted by | What did you do yesterday | What will you do today | Any blockers? |
| ---------- | ------------ | ----------------------------- | -------------------------------------------------- | ------------------------------------ |
| 18/11/2024 | Ishak | --- | Engels, Repo fixen, beginnen met nieuwe user story | --- |
| 18/11/2024 | Sam | --- | Engels, Feedback verwerken medium stake | None |
| 18/11/2024 | Yannick | --- | Engels, Documentatie, Code samenvoegen | None |
| 18/11/2024 | Mees | --- | Engels, Onderzoek | None |
| 19/11/2024 | Ishak | Engels, Repo fixen | workshop | --- |
| 19/11/2024 | Sam | Engels, Feedback verwerken | workshop | None |
| 19/11/2024 | Yannick | code samenvoegen,schema maken | workshop, documentatie | None |
| 19/11/2024 | Mees | niks | workshop, fixen include path | include path werkt niet |
| 26/11/2024 | Ishak | Workshop | database, engels video opnemen | phpmyadmin werkt niet(weet probleem) |
| 26/11/2024 | Sam | opencv | opencv | --- |
| 26/11/2024 | Yannick | ziek | ziek | --- |
| 26/11/2024 | Mees | Engels video | stepper motor | vscode werkt niet |
| 02/12/2024 | Ishak | database | database | --- |
| 02/12/2024 | Sam | opencv | camera beeld op website | --- |
| 02/12/2024 | Yannick | ziek, documentatie | behuizing voor esp | --- |

View File

@@ -1,12 +0,0 @@
# sprint review 4 feedback
- Definition of done SMART maken
- Uitgebreider beschrijven wat er voor de definition of done nodig is
- Testen van de software niet meer dan een halve A4
- Acceptatie criteria beter uitschrijven( vragen aan ed)
- Meer software ontwikkelen
- kijken of we met een punten systeem kunnen werken in user stories. zo kan je zien hoe groot een user story is.
- read.me file aanpassen
- meer aan documentatie doen.
- technisch iets te uitdagend
- planning beter maken

View File

@@ -34,22 +34,17 @@ plugins:
modules: [mkdocs_macros_mdocotion]
markdown_extensions:
- attr_list
- admonition
- pymdownx.details
- pymdownx.superfences
- md_in_html
- fenced_code
- pymdownx.highlight:
linenums: true
use_pygments: true
- pymdownx.inlinehilite
- pymdownx.snippets
- pymdownx.superfences:
custom_fences:
- name: mermaid
class: mermaid
format: !!python/name:pymdownx.superfences.fence_code_format
- toc:
permalink: true
- pymdownx.details
- attr_list
- md_in_html
- fenced_code
- pymdownx.highlight:
linenums: true
use_pygments: true
- pymdownx.inlinehilite
- pymdownx.snippets
- pymdownx.tabbed
- pymdownx.superfences:
custom_fences:
- name: mermaid
class: mermaid
format: !!python/name:pymdownx.superfences.fence_code_format

View File

@@ -0,0 +1,123 @@
#include <DHT.h>
#include <Wire.h>
#include "Adafruit_SGP30.h"
#include <WiFi.h>
#include <PubSubClient.h>
#include <ArduinoWebsockets.h>
using namespace websockets;
Adafruit_SGP30 sgp;
// Definieert de pins voor de sensoren
#define DHTPIN 4
#define DHTTYPE DHT11
#define MQ5_PIN 2
#define SDA_PIN 10
#define SCL_PIN 11
DHT dht(DHTPIN, DHTTYPE);
// WiFi en MQTT instellingen
const char* ssid = "";
const char* password = "";
const char* mqtt_server = "192.168.68.104";
const int mqtt_port = 8080; //websocket-poort
const char* mqtt_topic = "sensors/data";
// MQTT client
WiFiClient espClient;
WebsocketsClient websocket;
PubSubClient client(espClient);
// Functie om verbinding te maken met WiFi
void setup_wifi() {
Serial.print("Verbinden met WiFi...");
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("Verbonden!");
}
void reconnectMQTT() {
while (!client.connected()) {
Serial.print("Verbinding maken met MQTT via WebSockets...");
if (client.connect("ESP32Client")) {
Serial.println("Verbonden!");
} else {
Serial.print("Fout: ");
Serial.print(client.state());
delay(5000);
}
}
}
void setup() {
// Start de seriële monitor
Serial.begin(9600);
dht.begin();
pinMode(MQ5_PIN, INPUT);
Wire.begin(SDA_PIN, SCL_PIN);
Serial.println("SGP30 test");
// SGP30 initialiseren
if (!sgp.begin()) {
Serial.println("SGP30 sensor niet gevonden :(");
while (1);
}
if (!sgp.IAQinit()) {
Serial.println("SGP30 IAQ-initialisatie mislukt!");
while (1);
}
// Verbind met WiFi en MQTT-broker
setup_wifi();
// Stel MQTT-broker in met websockets
client.setServer(mqtt_server, mqtt_port);
reconnectMQTT();
}
void loop() {
// Zorgt ervoor dat MQTT verbonden blijft
if (!client.connected()) {
reconnectMQTT();
}
client.loop();
float h = dht.readHumidity();
float t = dht.readTemperature();
int mq5Value = analogRead(MQ5_PIN);
// Check of de sensorwaarden geldig zijn
if (isnan(h) || isnan(t) || mq5Value < 0) {
Serial.println("Fout bij het lezen van de sensors!");
return;
}
// Maak een JSON-payload
String payload = "{";
payload += "\"humidity\":" + String(h) + ",";
payload += "\"temperature\":" + String(t) + ",";
payload += "\"mq5\":" + String(mq5Value) + ",";
payload += "\"tvoc\":" + String(sgp.TVOC) + ",";
payload += "\"eco2\":" + String(sgp.eCO2);
payload += "}";
// Verzend de payload via MQTT
if (client.publish(mqtt_topic, payload.c_str())) {
Serial.println("Bericht verzonden: " + payload);
} else {
Serial.println("Fout bij verzenden van bericht!");
}
// Wacht 5 seconden voor de volgende meting
delay(5000);
}

View File

@@ -0,0 +1,40 @@
// Test code is merged to main sensor code os this file is not needed anymore
#include <Wire.h>
#include "Adafruit_SGP30.h"
Adafruit_SGP30 sgp;
#define SDA_PIN 10
#define SCL_PIN 11
void setup() {
Serial.begin(115200);
while (!Serial) { delay(10); }
Wire.begin(SDA_PIN, SCL_PIN);
Serial.println("SGP30 test");
if (!sgp.begin()) {
Serial.println("SGP30 sensor not found :(");
while (1);
}
// Start measurements (initialize baseline)
if (! sgp.IAQinit()) {
Serial.println("SGP30 IAQinit failed!");
while (1);
}
}
void loop() {
if (! sgp.IAQmeasure()) {
Serial.println("Measurement failed");
return;
}
Serial.print("TVOC "); Serial.print(sgp.TVOC); Serial.print(" ppb\t");
Serial.print("eCO2 "); Serial.print(sgp.eCO2); Serial.println(" ppm");
delay(1000); // 1 second delay
}

View File

@@ -1,23 +1,12 @@
cmake_minimum_required(VERSION 3.9)
project(kobuki_control)
set(CMAKE_CXX_STANDARD 23)
# Find the Paho MQTT C++ library (static)
find_library(PAHO_MQTTPP_LIBRARY paho-mqttpp3 PATHS /usr/local/lib)
find_library(PAHO_MQTT_LIBRARY paho-mqtt3a PATHS /usr/local/lib)
include_directories(/usr/local/include)
set(SOURCE_FILES
src/KobukiDriver/KobukiParser.cpp
src/KobukiDriver/KobukiParser.h
src/KobukiDriver/CKobuki.cpp
src/KobukiDriver/CKobuki.h
src/MQTT/MqttClient.cpp
src/MQTT/MqttClient.h
src/main.cpp)
src/KobukiParser.cpp
src/KobukiParser.h
src/CKobuki.cpp
src/CKobuki.h
src/main.cpp)
add_executable(kobuki_control ${SOURCE_FILES})
# Link the static libraries
target_link_libraries(kobuki_control ${PAHO_MQTTPP_LIBRARY} ${PAHO_MQTT_LIBRARY} pthread)
#target_link_libraries(kobuki_control )

683
src/C++/Driver/src/CKobuki.cpp Executable file
View File

@@ -0,0 +1,683 @@
#include "CKobuki.h"
#include "errno.h"
#include "termios.h"
#include <cstddef>
#include <iostream>
#include <thread>
// plot p;
static std::vector<float> vectorX;
static std::vector<float> vectorY;
static std::vector<float> vectorGyroTheta;
// obsluha tty pod unixom
int set_interface_attribs2(int fd, int speed, int parity)
{
struct termios tty;
memset(&tty, 0, sizeof tty);
if (tcgetattr(fd, &tty) != 0)
{
printf("error %d from tcgetattr", errno);
return -1;
}
cfsetospeed(&tty, speed);
cfsetispeed(&tty, speed);
tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8; // 8-bit chars
// disable IGNBRK for mismatched speed tests; otherwise receive break
// as \000 chars
// tty.c_iflag &= ~IGNBRK; // disable break processing
tty.c_lflag = 0; // no signaling chars, no echo,
// no canonical processing
tty.c_oflag = 0; // no remapping, no delays
tty.c_cc[VMIN] = 0; // read doesn't block
tty.c_cc[VTIME] = 5; // 0.5 seconds read timeout
tty.c_iflag &= ~(IGNBRK | INLCR | ICRNL | IXON | IXOFF |
IXANY); // shut off xon/xoff ctrl
tty.c_cflag |= (CLOCAL | CREAD); // ignore modem controls,
// enable reading
tty.c_cflag &= ~(PARENB | PARODD); // shut off parity
tty.c_cflag |= parity;
tty.c_cflag &= ~CSTOPB;
tty.c_cflag &= ~CRTSCTS;
if (tcsetattr(fd, TCSANOW, &tty) != 0)
{
printf("error %d from tcsetattr", errno);
return -1;
}
return 0;
}
void set_blocking2(int fd, int should_block)
{
struct termios tty;
memset(&tty, 0, sizeof tty);
if (tcgetattr(fd, &tty) != 0)
{
printf("error %d from tggetattr", errno);
return;
}
tty.c_cc[VMIN] = should_block ? 1 : 0;
tty.c_cc[VTIME] = 5; // 0.5 seconds read timeout
if (tcsetattr(fd, TCSANOW, &tty) != 0)
printf("error %d setting term attributes", errno);
}
int CKobuki::connect(char *comportT)
{
HCom = open(comportT, O_RDWR | O_NOCTTY | O_NONBLOCK);
if (HCom == -1)
{
printf("Kobuki nepripojeny\n");
return HCom;
}
else
{
set_interface_attribs2(HCom, B115200,
0); // set speed to 115,200 bps, 8n1 (no parity)
set_blocking2(HCom, 0); // set no blocking
/* struct termios settings;
tcgetattr(HCom, &settings);
cfsetospeed(&settings, B115200); // baud rate
settings.c_cflag &= ~PARENB; // no parity
settings.c_cflag &= ~CSTOPB; // 1 stop bit
settings.c_cflag &= ~CSIZE;
settings.c_cflag |= CS8 | CLOCAL; // 8 bits
settings.c_lflag &= ~ICANON; // canonical mode
settings.c_cc[VTIME]=1;
settings.c_oflag &= ~OPOST; // raw output
tcsetattr(HCom, TCSANOW, &settings); // apply the settings*/
tcflush(HCom, TCOFLUSH);
printf("Kobuki pripojeny\n");
return HCom;
}
}
unsigned char *CKobuki::readKobukiMessage()
{
unsigned char buffer[1];
ssize_t Pocet;
buffer[0] = 0;
unsigned char *null_buffer(0);
// citame kym nezachytime zaciatok spravy
do
{
Pocet = read(HCom, buffer, 1);
} while (buffer[0] != 0xAA);
// mame zaciatok spravy (asi)
if (Pocet == 1 && buffer[0] == 0xAA)
{
// citame dalsi byte
do
{
Pocet = read(HCom, buffer, 1);
} while (Pocet != 1); // na linuxe -1 na windowse 0
// a ak je to druhy byte hlavicky
if (Pocet == 1 && buffer[0] == 0x55)
{
// precitame dlzku
Pocet = read(HCom, buffer, 1);
// ReadFile(hCom, buffer, 1, &Pocet, NULL);
if (Pocet == 1)
{
// mame dlzku.. nastavime vektor a precitame ho cely
int readLenght = buffer[0];
unsigned char *outputBuffer =
(unsigned char *)calloc(readLenght + 4, sizeof(char));
outputBuffer[0] = buffer[0];
int pct = 0;
do
{
Pocet = 0;
int readpoc = (readLenght + 1 - pct);
Pocet = read(HCom, outputBuffer + 1 + pct, readpoc);
pct = pct + (Pocet == -1 ? 0 : Pocet);
} while (pct != (readLenght + 1));
// tu si mozeme ceknut co chodi zo serial intefejsu Kobukiho
// for(int i=0;i<outputBuffer[0]+2;i++)
// {
// printf("%x ",outputBuffer[i]);
// }
return outputBuffer;
}
}
}
return null_buffer;
}
void CKobuki::setLed(int led1, int led2)
{
unsigned char message[8] = {0xaa, 0x55, 0x04, 0x0c, 0x02, 0x00, (unsigned char)((led1 + led2 * 4) % 256), 0x00};
message[7] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6];
uint32_t pocet;
pocet = write(HCom, &message, 8);
}
// tato funkcia nema moc sama o sebe vyznam, payload o tom, ze maju byt externe
// napajania aktivne musi byt aj tak v kazdej sprave...
void CKobuki::setPower(int value)
{
if (value == 1)
{
unsigned char message[8] = {0xaa, 0x55, 0x04, 0x0C, 0x02, 0xf0, 0x00, 0xAF};
uint32_t pocet;
pocet = write(HCom, &message, 8);
}
}
void CKobuki::setTranslationSpeed(int mmpersec)
{
unsigned char message[14] = {0xaa, 0x55, 0x0A, 0x0c, 0x02,
0xf0, 0x00, 0x01, 0x04, mmpersec % 256,
mmpersec >> 8, 0x00, 0x00, 0x00};
message[13] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6] ^
message[7] ^ message[8] ^ message[9] ^ message[10] ^
message[11] ^ message[12];
uint32_t pocet;
pocet = write(HCom, &message, 14);
}
void CKobuki::setRotationSpeed(double radpersec)
{
int speedvalue = radpersec * 230.0f / 2.0f;
unsigned char message[14] = {0xaa,
0x55,
0x0A,
0x0c,
0x02,
0xf0,
0x00,
0x01,
0x04,
speedvalue % 256,
speedvalue >> 8,
0x01,
0x00,
0x00};
message[13] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6] ^
message[7] ^ message[8] ^ message[9] ^ message[10] ^
message[11] ^ message[12];
uint32_t pocet;
pocet = write(HCom, &message, 14);
}
void CKobuki::setArcSpeed(int mmpersec, int radius)
{
if (radius == 0)
{
setTranslationSpeed(mmpersec);
return;
}
int speedvalue =
mmpersec * ((radius + (radius > 0 ? 230 : -230)) / 2) / radius;
unsigned char message[14] = {0xaa,
0x55,
0x0A,
0x0c,
0x02,
0xf0,
0x00,
0x01,
0x04,
speedvalue % 256,
speedvalue >> 8,
radius % 256,
radius >> 8,
0x00};
message[13] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6] ^
message[7] ^ message[8] ^ message[9] ^ message[10] ^
message[11] ^ message[12];
uint32_t pocet;
pocet = write(HCom, &message, 14);
}
void CKobuki::setSound(int noteinHz, int duration)
{
int notevalue = floor((double)1.0 / ((double)noteinHz * 0.00000275) + 0.5);
unsigned char message[9] = {0xaa, 0x55, 0x05,
0x03, 0x03, notevalue % 256,
notevalue >> 8, duration % 256, 0x00};
message[8] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6] ^
message[7];
uint32_t pocet;
pocet = write(HCom, &message, 9);
}
void CKobuki::startCommunication(char *portname, bool CommandsEnabled, void *userDataL)
{
connect(portname);
enableCommands(CommandsEnabled);
userData = userDataL;
int pthread_result;
pthread_result = pthread_create(&threadHandle, NULL, KobukiProcess, (void *)this);
if (pthread_result != 0) {
std::cerr << "Error creating thread: " << pthread_result << std::endl;
}
}
int CKobuki::measure()
{
while (stopVlakno == 0)
{
unsigned char *message = readKobukiMessage();
if (message == NULL)
{
// printf("vratil null message\n");
continue;
}
int ok = parser.parseKobukiMessage(parser.data, message);
// maximalne moze trvat callback funkcia 20 ms, ak by trvala viac, nestihame
// citat
if (ok == 0)
{
loop(userData, parser.data);
}
free(message);
}
return 0;
}
long double CKobuki::gyroToRad(signed short GyroAngle)
{
long double rad;
if (GyroAngle < 0)
{
rad = GyroAngle + 360;
}
else
{
rad = GyroAngle;
}
return (long double)rad * PI / 180.0;
}
long CKobuki::loop(void *user_data, TKobukiData &Kobuki_data)
{
if (iterationCount == 0)
{
prevLeftEncoder = Kobuki_data.EncoderLeft;
prevRightEncoder = Kobuki_data.EncoderRight;
prevTimestamp = Kobuki_data.timestamp;
prevGyroTheta = gyroToRad(Kobuki_data.GyroAngle);
iterationCount++;
}
int dLeft;
if (abs(Kobuki_data.EncoderLeft - prevLeftEncoder) > 32000)
{
dLeft = Kobuki_data.EncoderLeft - prevLeftEncoder +
(Kobuki_data.EncoderLeft > prevLeftEncoder ? -65536 : +65536);
}
else
{
dLeft = Kobuki_data.EncoderLeft - prevLeftEncoder;
}
int dRight;
if (abs(Kobuki_data.EncoderRight - prevRightEncoder) > 32000)
{
dRight = Kobuki_data.EncoderRight - prevRightEncoder +
(Kobuki_data.EncoderRight > prevRightEncoder ? -65536 : +65536);
}
else
{
dRight = Kobuki_data.EncoderRight - prevRightEncoder;
}
long double dGyroTheta = prevGyroTheta - gyroToRad(Kobuki_data.GyroAngle);
if (dGyroTheta > PI)
{
dGyroTheta -= 2 * PI;
}
if (dGyroTheta < -1 * PI)
{
dGyroTheta += 2 * PI;
}
gyroTheta += dGyroTheta;
uint16_t dTimestamp = Kobuki_data.timestamp - prevTimestamp;
long double mLeft = dLeft * tickToMeter;
long double mRight = dRight * tickToMeter;
if (mLeft == mRight)
{
x = x + mRight;
}
else
{
x = x + (b * (mRight + mLeft)) / (2 * (mRight - mLeft)) *
(sin((mRight - mLeft) / b + theta) - sin(theta));
y = y + (b * (mRight + mLeft)) / (2 * (mRight - mLeft)) *
(cos((mRight - mLeft) / b + theta) - cos(theta));
theta = (mRight - mLeft) / b + theta;
}
displacement = (mRight + mLeft) / 2;
integratedGyroTheta = integratedGyroTheta + dGyroTheta;
gx = gx + displacement * cos(integratedGyroTheta + dGyroTheta / 2);
gy = gy + displacement * sin(integratedGyroTheta + dGyroTheta / 2);
totalLeft += dLeft;
totalRight += dRight;
// ak je suma novej a predchadzajucej vacsia ako 65536 tak to pretieklo?
directionL = (prevLeftEncoder < Kobuki_data.EncoderLeft ? 1 : -1);
directionR = (prevRightEncoder < Kobuki_data.EncoderRight ? 1 : -1);
dTimestamp = (Kobuki_data.timestamp < prevTimestamp
? prevTimestamp - Kobuki_data.timestamp + 65536
: dTimestamp);
prevLeftEncoder = Kobuki_data.EncoderLeft;
prevRightEncoder = Kobuki_data.EncoderRight;
prevTimestamp = Kobuki_data.timestamp;
prevGyroTheta = gyroToRad(Kobuki_data.GyroAngle);
// std::cout << "X: " << x
// << " Y: " << y
// << " Theta: " << theta
// << "Gyro theta:" << gyroTheta
// << std::endl;
static long counter = 0;
//vector for data plotting
vectorX.push_back(gx);
vectorY.push_back(gy);
vectorGyroTheta.push_back(gyroTheta);
// if (counter % 100 == 0) {
// p.plot_data(vectorY, vectorX);
// }
counter++;
return 0;
}
// tells the kobuki to go a few meters forward or backward, the sign decides
// the function compensates for walking straight with the controller, internally it uses setArcSpeed and
// uses encoder data as feedback
void CKobuki::goStraight(long double distance){
long double u_translation = 0; // controlled magnitude, speed of the robot in motion
long double w_translation = distance; // requested value
// controller parameters
long double Kp_translation = 4500;
long double e_translation = 0;
int upper_thresh_translation = 600;
int lower_thresh_translation = 40;
int translation_start_gain = 20;
long double u_rotation = 0; // controlled magnitude
long double w_rotation = 0;
long double Kp_rotation = 57;
long double e_rotation = 0;
x = 0;
y = 0;
theta = 0;
long i = 5;
//send command and hold until robot reaches point
while (fabs(x - w_translation) > 0.005 && x < w_translation)
{
e_translation = w_translation - x;
u_translation = Kp_translation * e_translation;
e_rotation = w_rotation - theta;
if (!e_rotation == 0)
u_rotation = Kp_rotation / e_rotation;
// limit translation speed
if (u_translation > upper_thresh_translation)
u_translation = upper_thresh_translation;
if (u_translation < lower_thresh_translation)
u_translation = lower_thresh_translation;
// rewrite starting speed with line
if (i < u_translation)
{
u_translation = i;
}
if (fabs(u_rotation) > 32767)
{
u_rotation = -32767;
}
if (u_rotation == 0)
{
u_rotation = -32767;
}
//send command to robot
this->setArcSpeed(u_translation, u_rotation);
// increment starting speed
i = i + translation_start_gain;
}
this->setTranslationSpeed(0);
}
/// the method performs the rotation, it rotates using the regulator, the
/// gyroscope serves as feedback, because it is much more accurate than encoders
void CKobuki::doRotation(long double th)
{
long double u = 0; // controlled variable, angular speed of the robot during movement
long double w = th; // desired value in radians
long double Kp = PI;
long double e = 0;
int thresh = PI / 2;
theta = 0;
x = 0;
y = 0;
gyroTheta = 0;
long double i = 0;
if (w > 0)
{
while (gyroTheta < w)
{
e = w - gyroTheta;
u = Kp * e;
if (u > thresh)
u = thresh;
if (u < 0.4)
u = 0.4;
if (i < u)
{
u = i;
}
std::cout << "Angle: " << gyroTheta << " required:" << w << std::endl;
this->setRotationSpeed(-1 * u);
usleep(25 * 1000);
i = i + 0.1;
}
}
else
{
while (gyroTheta > w)
{
e = w - gyroTheta;
u = Kp * e * -1;
if (u > thresh)
u = thresh;
if (u < 0.4)
u = 0.4;
if (i < u)
{
u = i;
}
std::cout << "Angle: " << gyroTheta << " required:" << w << std::endl;
this->setRotationSpeed(u);
usleep(25 * 1000);
i = i + 0.1;
}
}
std::cout << "Rotation done" << std::endl;
this->setRotationSpeed(0);
usleep(25*1000);
}
// combines navigation to a coordinate and rotation by an angle, performs movement to
// the selected coordinate in the robot's coordinate system
void CKobuki::goToXy(long double xx, long double yy)
{
long double th;
yy = yy * -1;
th = atan2(yy, xx);
doRotation(th);
long double s = sqrt(pow(xx, 2) + pow(yy, 2));
// resetnem suradnicovu sustavu robota
x = 0;
y = 0;
iterationCount = 0;
theta = 0;
// std::cout << "mam prejst: " << s << "[m]" << std::endl;
goStraight(s);
usleep(25 * 1000);
return;
}
/// @brief Makes the Kobuki go forward
/// @param speedvalue speed of robot in mm/s
/// @param distance distance in meters
void CKobuki::forward(int speedvalue) {
// Use the goStraight logic to determine the speed and distance
// Calculate the actual speed and radius values based on the conversion table
int actual_speed = speedvalue;
int actual_radius = 0; // Pure translation (straight line)
unsigned char message[11] = {
0xaa, // Start byte 1
0x55, // Start byte 2
0x08, // Payload length (the first 2 bytes dont count)
0x01, // payload type (0x01 = control command)
0x04, // Control byte or additional identifier
actual_speed % 256, // Lower byte of speed value
actual_speed >> 8, // Upper byte of speed value
0x00, // Placeholder for radius
0x00, // Placeholder for radius
0x00 // Placeholder for checksum
};
// Calculate checksum
message[10] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6] ^
message[7] ^ message[8] ^ message[9];
// Send the message
uint32_t pocet;
pocet = write(HCom, &message, 11);
pocet = write(HCom, &message, 11);
}
/// @brief Makes the kobuki rotate
/// @param degrees Rotation in degrees
void CKobuki::Rotate(int degrees) {
// convert raidans to degrees
float radians = degrees * PI / 180.0;
// Calculate the rotation speed in radians per second
double radpersec = 1;
// calculator rotation time and give absolute value
float rotation_time = std::abs(radians / radpersec);
// Use original function to set the rotation speed in mm/s
setRotationSpeed(radians);
// Sleep for the calculated rotation time
std::this_thread::sleep_for(std::chrono::milliseconds(static_cast<int>(rotation_time * 1000)));
// Stop the robot after the rotation
setRotationSpeed(0);
}
void CKobuki::robotSafety() {
while (true) {
if (parser.data.BumperCenter || parser.data.BumperLeft || parser.data.BumperRight ||
parser.data.CliffLeft || parser.data.CliffCenter || parser.data.CliffRight) {
std::cout << "Safety condition triggered!" << std::endl; // Debug print
forward(-100); // reverse the robot
}
}
}
void CKobuki::sendNullMessage(){
unsigned char message[11] = {
0xaa, // Start byte 1
0x55, // Start byte 2
0x08, // Payload length (the first 2 bytes dont count)
0x01, // payload type (0x01 = control command)
0x04, // Control byte or additional identifier
0x00, // Lower byte of speed value
0x00, // Upper byte of speed value
0x00, // Placeholder for radius
0x00, // Placeholder for radius
0x00 // Placeholder for checksum
};
message[10] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6] ^
message[7] ^ message[8] ^ message[9];
// Send the message
uint32_t pocet;
pocet = write(HCom, &message, 11);
}

View File

@@ -76,10 +76,8 @@ public:
void goToXy(long double xx, long double yy);
void Rotate(int degrees);
std::ofstream odometry_log;
void robotSafety(std::string *pointerToMessage);
void robotSafety(); //overload
void robotSafety();
void sendNullMessage();
bool safetyActive = false;
KobukiParser parser;

View File

@@ -1,646 +0,0 @@
#include "CKobuki.h"
#include "errno.h"
#include "termios.h"
#include <cstddef>
#include <iostream>
#include <thread>
// plot p;
static std::vector<float> vectorX;
static std::vector<float> vectorY;
static std::vector<float> vectorGyroTheta;
// obsluha tty pod unixom
int set_interface_attribs2(int fd, int speed, int parity) {
struct termios tty;
memset(&tty, 0, sizeof tty);
if (tcgetattr(fd, &tty) != 0) {
printf("error %d from tcgetattr", errno);
return -1;
}
cfsetospeed(&tty, speed);
cfsetispeed(&tty, speed);
tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8; // 8-bit chars
// disable IGNBRK for mismatched speed tests; otherwise receive break
// as \000 chars
// tty.c_iflag &= ~IGNBRK; // disable break processing
tty.c_lflag = 0; // no signaling chars, no echo,
// no canonical processing
tty.c_oflag = 0; // no remapping, no delays
tty.c_cc[VMIN] = 0; // read doesn't block
tty.c_cc[VTIME] = 5; // 0.5 seconds read timeout
tty.c_iflag &= ~(IGNBRK | INLCR | ICRNL | IXON | IXOFF |
IXANY); // shut off xon/xoff ctrl
tty.c_cflag |= (CLOCAL | CREAD); // ignore modem controls,
// enable reading
tty.c_cflag &= ~(PARENB | PARODD); // shut off parity
tty.c_cflag |= parity;
tty.c_cflag &= ~CSTOPB;
tty.c_cflag &= ~CRTSCTS;
if (tcsetattr(fd, TCSANOW, &tty) != 0) {
printf("error %d from tcsetattr", errno);
return -1;
}
return 0;
}
void set_blocking2(int fd, int should_block) {
struct termios tty;
memset(&tty, 0, sizeof tty);
if (tcgetattr(fd, &tty) != 0) {
printf("error %d from tggetattr", errno);
return;
}
tty.c_cc[VMIN] = should_block ? 1 : 0;
tty.c_cc[VTIME] = 5; // 0.5 seconds read timeout
if (tcsetattr(fd, TCSANOW, &tty) != 0)
printf("error %d setting term attributes", errno);
}
int CKobuki::connect(char *comportT) {
HCom = open(comportT, O_RDWR | O_NOCTTY | O_NONBLOCK);
if (HCom == -1) {
printf("Kobuki nepripojeny\n");
return HCom;
} else {
set_interface_attribs2(HCom, B115200,
0); // set speed to 115,200 bps, 8n1 (no parity)
set_blocking2(HCom, 0); // set no blocking
/* struct termios settings;
tcgetattr(HCom, &settings);
cfsetospeed(&settings, B115200); // baud rate
settings.c_cflag &= ~PARENB; // no parity
settings.c_cflag &= ~CSTOPB; // 1 stop bit
settings.c_cflag &= ~CSIZE;
settings.c_cflag |= CS8 | CLOCAL; // 8 bits
settings.c_lflag &= ~ICANON; // canonical mode
settings.c_cc[VTIME]=1;
settings.c_oflag &= ~OPOST; // raw output
tcsetattr(HCom, TCSANOW, &settings); // apply the settings*/
tcflush(HCom, TCOFLUSH);
printf("Kobuki pripojeny\n");
return HCom;
}
}
unsigned char *CKobuki::readKobukiMessage() {
unsigned char buffer[1];
ssize_t Pocet;
buffer[0] = 0;
unsigned char *null_buffer(0);
// citame kym nezachytime zaciatok spravy
do {
Pocet = read(HCom, buffer, 1);
} while (buffer[0] != 0xAA);
// mame zaciatok spravy (asi)
if (Pocet == 1 && buffer[0] == 0xAA) {
// citame dalsi byte
do {
Pocet = read(HCom, buffer, 1);
} while (Pocet != 1); // na linuxe -1 na windowse 0
// a ak je to druhy byte hlavicky
if (Pocet == 1 && buffer[0] == 0x55) {
// precitame dlzku
Pocet = read(HCom, buffer, 1);
// ReadFile(hCom, buffer, 1, &Pocet, NULL);
if (Pocet == 1) {
// mame dlzku.. nastavime vektor a precitame ho cely
int readLenght = buffer[0];
unsigned char *outputBuffer =
(unsigned char *)calloc(readLenght + 4, sizeof(char));
outputBuffer[0] = buffer[0];
int pct = 0;
do {
Pocet = 0;
int readpoc = (readLenght + 1 - pct);
Pocet = read(HCom, outputBuffer + 1 + pct, readpoc);
pct = pct + (Pocet == -1 ? 0 : Pocet);
} while (pct != (readLenght + 1));
// tu si mozeme ceknut co chodi zo serial intefejsu Kobukiho
// for(int i=0;i<outputBuffer[0]+2;i++)
// {
// printf("%x ",outputBuffer[i]);
// }
return outputBuffer;
}
}
}
return null_buffer;
}
void CKobuki::setLed(int led1, int led2) {
unsigned char message[8] = {0xaa,
0x55,
0x04,
0x0c,
0x02,
0x00,
(unsigned char)((led1 + led2 * 4) % 256),
0x00};
message[7] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6];
uint32_t pocet;
pocet = write(HCom, &message, 8);
}
// tato funkcia nema moc sama o sebe vyznam, payload o tom, ze maju byt externe
// napajania aktivne musi byt aj tak v kazdej sprave...
void CKobuki::setPower(int value) {
if (value == 1) {
unsigned char message[8] = {0xaa, 0x55, 0x04, 0x0C, 0x02, 0xf0, 0x00, 0xAF};
uint32_t pocet;
pocet = write(HCom, &message, 8);
}
}
void CKobuki::setTranslationSpeed(int mmpersec) {
unsigned char message[14] = {0xaa, 0x55, 0x0A, 0x0c, 0x02,
0xf0, 0x00, 0x01, 0x04, mmpersec % 256,
mmpersec >> 8, 0x00, 0x00, 0x00};
message[13] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6] ^
message[7] ^ message[8] ^ message[9] ^ message[10] ^
message[11] ^ message[12];
uint32_t pocet;
pocet = write(HCom, &message, 14);
}
void CKobuki::setRotationSpeed(double radpersec) {
int speedvalue = radpersec * 230.0f / 2.0f;
unsigned char message[14] = {0xaa,
0x55,
0x0A,
0x0c,
0x02,
0xf0,
0x00,
0x01,
0x04,
speedvalue % 256,
speedvalue >> 8,
0x01,
0x00,
0x00};
message[13] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6] ^
message[7] ^ message[8] ^ message[9] ^ message[10] ^
message[11] ^ message[12];
uint32_t pocet;
pocet = write(HCom, &message, 14);
}
void CKobuki::setArcSpeed(int mmpersec, int radius) {
if (radius == 0) {
setTranslationSpeed(mmpersec);
return;
}
int speedvalue =
mmpersec * ((radius + (radius > 0 ? 230 : -230)) / 2) / radius;
unsigned char message[14] = {0xaa,
0x55,
0x0A,
0x0c,
0x02,
0xf0,
0x00,
0x01,
0x04,
speedvalue % 256,
speedvalue >> 8,
radius % 256,
radius >> 8,
0x00};
message[13] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6] ^
message[7] ^ message[8] ^ message[9] ^ message[10] ^
message[11] ^ message[12];
uint32_t pocet;
pocet = write(HCom, &message, 14);
}
void CKobuki::setSound(int noteinHz, int duration) {
int notevalue = floor((double)1.0 / ((double)noteinHz * 0.00000275) + 0.5);
unsigned char message[9] = {0xaa, 0x55, 0x05,
0x03, 0x03, notevalue % 256,
notevalue >> 8, duration % 256, 0x00};
message[8] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6] ^
message[7];
uint32_t pocet;
pocet = write(HCom, &message, 9);
}
void CKobuki::startCommunication(char *portname, bool CommandsEnabled,
void *userDataL) {
connect(portname);
enableCommands(CommandsEnabled);
userData = userDataL;
int pthread_result;
pthread_result =
pthread_create(&threadHandle, NULL, KobukiProcess, (void *)this);
if (pthread_result != 0) {
std::cerr << "Error creating thread: " << pthread_result << std::endl;
}
}
int CKobuki::measure() {
while (stopVlakno == 0) {
unsigned char *message = readKobukiMessage();
if (message == NULL) {
// printf("vratil null message\n");
continue;
}
int ok = parser.parseKobukiMessage(parser.data, message);
// maximalne moze trvat callback funkcia 20 ms, ak by trvala viac, nestihame
// citat
if (ok == 0) {
loop(userData, parser.data);
}
free(message);
}
return 0;
}
long double CKobuki::gyroToRad(signed short GyroAngle) {
long double rad;
if (GyroAngle < 0) {
rad = GyroAngle + 360;
} else {
rad = GyroAngle;
}
return (long double)rad * PI / 180.0;
}
long CKobuki::loop(void *user_data, TKobukiData &Kobuki_data) {
if (iterationCount == 0) {
prevLeftEncoder = Kobuki_data.EncoderLeft;
prevRightEncoder = Kobuki_data.EncoderRight;
prevTimestamp = Kobuki_data.timestamp;
prevGyroTheta = gyroToRad(Kobuki_data.GyroAngle);
iterationCount++;
}
int dLeft;
if (abs(Kobuki_data.EncoderLeft - prevLeftEncoder) > 32000) {
dLeft = Kobuki_data.EncoderLeft - prevLeftEncoder +
(Kobuki_data.EncoderLeft > prevLeftEncoder ? -65536 : +65536);
} else {
dLeft = Kobuki_data.EncoderLeft - prevLeftEncoder;
}
int dRight;
if (abs(Kobuki_data.EncoderRight - prevRightEncoder) > 32000) {
dRight = Kobuki_data.EncoderRight - prevRightEncoder +
(Kobuki_data.EncoderRight > prevRightEncoder ? -65536 : +65536);
} else {
dRight = Kobuki_data.EncoderRight - prevRightEncoder;
}
long double dGyroTheta = prevGyroTheta - gyroToRad(Kobuki_data.GyroAngle);
if (dGyroTheta > PI) {
dGyroTheta -= 2 * PI;
}
if (dGyroTheta < -1 * PI) {
dGyroTheta += 2 * PI;
}
gyroTheta += dGyroTheta;
uint16_t dTimestamp = Kobuki_data.timestamp - prevTimestamp;
long double mLeft = dLeft * tickToMeter;
long double mRight = dRight * tickToMeter;
if (mLeft == mRight) {
x = x + mRight;
} else {
x = x + (b * (mRight + mLeft)) / (2 * (mRight - mLeft)) *
(sin((mRight - mLeft) / b + theta) - sin(theta));
y = y + (b * (mRight + mLeft)) / (2 * (mRight - mLeft)) *
(cos((mRight - mLeft) / b + theta) - cos(theta));
theta = (mRight - mLeft) / b + theta;
}
displacement = (mRight + mLeft) / 2;
integratedGyroTheta = integratedGyroTheta + dGyroTheta;
gx = gx + displacement * cos(integratedGyroTheta + dGyroTheta / 2);
gy = gy + displacement * sin(integratedGyroTheta + dGyroTheta / 2);
totalLeft += dLeft;
totalRight += dRight;
// ak je suma novej a predchadzajucej vacsia ako 65536 tak to pretieklo?
directionL = (prevLeftEncoder < Kobuki_data.EncoderLeft ? 1 : -1);
directionR = (prevRightEncoder < Kobuki_data.EncoderRight ? 1 : -1);
dTimestamp = (Kobuki_data.timestamp < prevTimestamp
? prevTimestamp - Kobuki_data.timestamp + 65536
: dTimestamp);
prevLeftEncoder = Kobuki_data.EncoderLeft;
prevRightEncoder = Kobuki_data.EncoderRight;
prevTimestamp = Kobuki_data.timestamp;
prevGyroTheta = gyroToRad(Kobuki_data.GyroAngle);
// std::cout << "X: " << x
// << " Y: " << y
// << " Theta: " << theta
// << "Gyro theta:" << gyroTheta
// << std::endl;
static long counter = 0;
vectorX.push_back(gx);
vectorY.push_back(gy);
vectorGyroTheta.push_back(gyroTheta);
// if (counter % 100 == 0) {
// p.plot_data(vectorY, vectorX);
// }
counter++;
return 0;
}
// tells the kobuki to go a few meters forward or backward, the sign decides
// the function compensates for walking straight with the controller, internally
// it uses setArcSpeed and uses encoder data as feedback
void CKobuki::goStraight(long double distance) {
long double u_translation =
0; // controlled magnitude, speed of the robot in motion
long double w_translation = distance; // requested value
// controller parameters
long double Kp_translation = 4500;
long double e_translation = 0;
int upper_thresh_translation = 600;
int lower_thresh_translation = 40;
int translation_start_gain = 20;
long double u_rotation = 0; // controlled magnitude
long double w_rotation = 0;
long double Kp_rotation = 57;
long double e_rotation = 0;
x = 0;
y = 0;
theta = 0;
long i = 5;
// send command and hold until robot reaches point
while (fabs(x - w_translation) > 0.005 && x < w_translation) {
e_translation = w_translation - x;
u_translation = Kp_translation * e_translation;
e_rotation = w_rotation - theta;
if (!e_rotation == 0)
u_rotation = Kp_rotation / e_rotation;
// limit translation speed
if (u_translation > upper_thresh_translation)
u_translation = upper_thresh_translation;
if (u_translation < lower_thresh_translation)
u_translation = lower_thresh_translation;
// rewrite starting speed with line
if (i < u_translation) {
u_translation = i;
}
if (fabs(u_rotation) > 32767) {
u_rotation = -32767;
}
if (u_rotation == 0) {
u_rotation = -32767;
}
// send command to robot
this->setArcSpeed(u_translation, u_rotation);
// increment starting speed
i = i + translation_start_gain;
}
this->setTranslationSpeed(0);
}
/// the method performs the rotation, it rotates using the regulator, the
/// gyroscope serves as feedback, because it is much more accurate than encoders
void CKobuki::doRotation(long double th) {
long double u =
0; // controlled variable, angular speed of the robot during movement
long double w = th; // desired value in radians
long double Kp = PI;
long double e = 0;
long double thresh = PI / 2;
theta = 0;
x = 0;
y = 0;
gyroTheta = 0;
long double i = 0;
if (w > 0) {
while (gyroTheta < w) {
e = w - gyroTheta;
u = Kp * e;
if (u > thresh) {
u = thresh;
}
if (u < 0.4) {
u = 0.4;
}
if (i < u) {
u = i;
}
std::cout << "Angle: " << gyroTheta << " required:" << w << std::endl;
this->setRotationSpeed(-1 * u);
usleep(25 * 1000);
i = i + 0.1;
}
} else {
while (gyroTheta > w) {
e = w - gyroTheta;
u = Kp * e * -1;
if (u > thresh)
u = thresh;
if (u < 0.4)
u = 0.4;
if (i < u) {
u = i;
}
std::cout << "Angle: " << gyroTheta << " required:" << w << std::endl;
this->setRotationSpeed(u);
usleep(25 * 1000);
i = i + 0.1;
}
}
std::cout << "Rotation done" << std::endl;
this->setRotationSpeed(0);
usleep(25 * 1000);
}
// combines navigation to a coordinate and rotation by an angle, performs
// movement to the selected coordinate in the robot's coordinate system
void CKobuki::goToXy(long double xx, long double yy) {
long double th;
yy = yy * -1;
th = atan2(yy, xx);
doRotation(th);
long double s = sqrt(pow(xx, 2) + pow(yy, 2));
// resetnem suradnicovu sustavu robota
x = 0;
y = 0;
iterationCount = 0;
theta = 0;
// std::cout << "mam prejst: " << s << "[m]" << std::endl;
goStraight(s);
usleep(25 * 1000);
return;
}
/// @brief Makes the robot move forward for 3 seconds
/// @param speedvalue How fast it will drive forward from 0 - 1024
void CKobuki::forward(int speedvalue) {
// Use the goStraight logic to determine the speed and distance
// Calculate the actual speed and radius values based on the conversion table
int actual_speed = speedvalue;
int actual_radius = 0; // Pure translation (straight line)
unsigned char message[11] = {
0xaa, // Start byte 1
0x55, // Start byte 2
0x08, // Payload length (the first 2 bytes dont count)
0x01, // payload type (0x01 = control command)
0x04, // Control byte or additional identifier
actual_speed % 256, // Lower byte of speed value
actual_speed >> 8, // Upper byte of speed value
0x00, // Placeholder for radius
0x00, // Placeholder for radius
0x00 // Placeholder for checksum
};
// Calculate checksum
message[10] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6] ^
message[7] ^ message[8] ^ message[9];
// Send the message
uint32_t pocet;
pocet = write(HCom, &message, 11);
}
/// @brief Makes the kobuki rotate
/// @param degrees Rotation in degrees
void CKobuki::Rotate(int degrees) {
// convert raidans to degrees
float radians = degrees * PI / 180.0;
// Calculate the rotation speed in radians per second
double RADS_PER_SEC = 1;
// calculator rotation time and give absolute value
float rotation_time = std::abs(radians / RADS_PER_SEC);
// Use original function to set the rotation speed in mm/s
setRotationSpeed(radians);
// Sleep for the calculated rotation time
std::this_thread::sleep_for(
std::chrono::milliseconds(static_cast<int>(rotation_time * 1000)));
// Stop the robot after the rotation
setRotationSpeed(0);
}
/// @brief Robot safety function to be ran in another thread. Makes sure the robot does not throw inteself from the table. Only use this when the speed is lower than 350
/// @param pointerToMessage Set this pointer to the control message and then it attempts to reset it when it bumps into something so it doesnt keep trying to do the past commant
// TODO: make this return bool so it can be used in the control part
void CKobuki::robotSafety(std::string *pointerToMessage) {
while (true) {
if (parser.data.BumperCenter || parser.data.BumperLeft ||
parser.data.BumperRight || parser.data.CliffLeft ||
parser.data.CliffCenter || parser.data.CliffRight) {
std::cout << "Safety condition triggered!" << std::endl; // Debug print
*pointerToMessage = "estop";
forward(-100); // reverse the robot
}
std::this_thread::sleep_for(std::chrono::milliseconds(static_cast<int>(100)));
}
}
/// @brief Robot safety function to be ran in another thread. Makes sure the robot does not throw inteself from the table. Only use this when the speed is lower than 350
void CKobuki::robotSafety() {
while (true) {
if (parser.data.BumperCenter || parser.data.BumperLeft ||
parser.data.BumperRight || parser.data.CliffLeft ||
parser.data.CliffCenter || parser.data.CliffRight) {
std::cout << "Safety condition triggered!" << std::endl; // Debug print
forward(-100); // reverse the robot
}
}
}
/// @brief When called the robot gets a control message to stop whatever its doing
void CKobuki::sendNullMessage() {
unsigned char message[11] = {
0xaa, // Start byte 1
0x55, // Start byte 2
0x08, // Payload length (the first 2 bytes dont count)
0x01, // payload type (0x01 = control command)
0x04, // Control byte or additional identifier
0x00, // Lower byte of speed value
0x00, // Upper byte of speed value
0x00, // Placeholder for radius
0x00, // Placeholder for radius
0x00 // Placeholder for checksum
};
message[10] = message[2] ^ message[3] ^ message[4] ^ message[5] ^ message[6] ^
message[7] ^ message[8] ^ message[9];
// Send the message
uint32_t pocet;
pocet = write(HCom, &message, 11);
}

View File

@@ -4,7 +4,7 @@
int KobukiParser::parseKobukiMessage(TKobukiData &output, unsigned char *data) {
int rtrnvalue = checkChecksum(data);
if (rtrnvalue != 0) {
// std::cerr << "Invalid checksum" << std::endl;
std::cerr << "Invalid checksum" << std::endl;
return -2;
}

View File

@@ -1,30 +0,0 @@
cmake_minimum_required(VERSION 3.10)
set(CMAKE_CXX_STANDARD 23)
# Project name
project(mqtt_receiver)
# Find the Paho MQTT C++ library
find_library(PAHO_MQTTPP_LIBRARY paho-mqttpp3 PATHS /usr/local/lib)
find_library(PAHO_MQTT_LIBRARY paho-mqtt3a PATHS /usr/local/lib)
# Include the headers
include_directories(/usr/local/include)
# Set source files
set(SOURCE_FILES
main.cpp
MqttClient.cpp
MqttClient.h
)
# Add the executable
add_executable(mqtt_receiver ${SOURCE_FILES})
# Link the libraries
# Include directories for headers
target_include_directories(mqtt_receiver PRIVATE)
find_package(Threads REQUIRED)
target_link_libraries(mqtt_receiver Threads::Threads)

View File

@@ -1,76 +0,0 @@
#include "MqttClient.h"
MqttClient::MqttClient(const std::string& address, const std::string& clientId, const std::string& username, const std::string& password)
//client_ is the connection
//here all the @PARAMS are getting set for the connection
: client_(address, clientId), username_(username), password_(password), callback_(*this) {
client_.set_callback(callback_);
options.set_clean_session(true);
options.set_mqtt_version(MQTTVERSION_3_1_1); // For MQTT 3.1.1
if (!username_.empty() && !password_.empty()) {
options.set_user_name(username_);
options.set_password(password_);
}
}
void MqttClient::connect() {
try {
std::cout << "Connecting to broker..." << std::endl;
client_.connect(options)->wait();
std::cout << "Connected!" << std::endl;
} catch (const mqtt::exception& exc) {
std::cerr << "Error: " << exc.what() << std::endl;
throw;
}
}
void MqttClient::subscribe(const std::string& topic, int qos) {
try {
std::cout << "Subscribing to topic: " << topic << std::endl;
client_.subscribe(topic, qos)->wait();
} catch (const mqtt::exception& exc) {
std::cerr << "Error: " << exc.what() << std::endl;
throw;
}
}
void MqttClient::publishMessage(const std::string& topic, const std::string& payload) {
try {
std::cout << "Publishing message: " << payload << std::endl;
client_.publish(topic, payload)->wait();
} catch (const mqtt::exception& exc) {
std::cerr << "Error: " << exc.what() << std::endl;
throw;
}
}
/// @brief Only needed when program doesnt keep itself alive
void MqttClient::run() {
// Keep the client running to receive messages
while (true) {
std::this_thread::sleep_for(std::chrono::seconds(1)); // Wait to reduce CPU usage
}
}
void MqttClient::Callback::message_arrived(mqtt::const_message_ptr msg) {
//lock the variable, it automaticly unlocks when going out of scope using lock_guard
std::lock_guard<std::mutex> lock(client_.messageMutex_);
client_.lastMessage_ = msg->to_string();
}
void MqttClient::Callback::connection_lost(const std::string& cause) {
std::cerr << "Connection lost. Cause: " << cause << std::endl;
}
void MqttClient::Callback::delivery_complete(mqtt::delivery_token_ptr token) {
std::cout << "Message delivered!" << std::endl;
}
/// @brief Get the last message received from the MQTT broker
/// @return The last message received in a string
//std::string is the datatype of the return value
std::string MqttClient::getLastMessage() {
//lock the variable, it automaticly unlocks when going out of scope using lock_guard
std::lock_guard<std::mutex> lock(messageMutex_);
return lastMessage_;
}

View File

@@ -1,39 +0,0 @@
#ifndef MQTTCLIENT_H
#define MQTTCLIENT_H
#include <iostream>
#include <thread>
#include <mutex>
#include <mqtt/async_client.h>
class MqttClient {
public:
MqttClient(const std::string& address, const std::string& clientId, const std::string& username = "", const std::string& password = "");
void connect();
void subscribe(const std::string& topic, int qos = 1);
void run();
std::string getLastMessage();
void publishMessage(const std::string& topic, const std::string& payload);
private:
class Callback : public virtual mqtt::callback {
public:
Callback(MqttClient& client) : client_(client) {}
void message_arrived(mqtt::const_message_ptr msg) override;
void connection_lost(const std::string& cause) override;
void delivery_complete(mqtt::delivery_token_ptr token) override;
private:
MqttClient& client_;
};
mqtt::async_client client_;
mqtt::connect_options options;
Callback callback_;
std::string username_;
std::string password_;
std::string lastMessage_;
std::mutex messageMutex_;
};
#endif //MQTTCLIENT_H

View File

@@ -1,10 +0,0 @@
#include "MqttClient.h"
//example file for testing
int main(){
MqttClient client("mqtt://localhost:1883", "raspberry_pi_client", "ishak", "kobuki");
client.connect();
client.subscribe("home/commands");
client.run();
return 0;
}

View File

@@ -1,86 +1,70 @@
#include "CKobuki.h"
#include <iostream>
#include <cmath>
#include <thread>
#include "KobukiDriver/graph.h"
#include "MQTT/MqttClient.h"
#include "KobukiDriver/CKobuki.h"
#include "graph.h"
using namespace std;
CKobuki robot;
std::string readMQTT();
void parseMQTT(std::string message);
//ip, clientID, username, password
MqttClient client("mqtt://145.92.224.21:1884", "KobukiRPI", "rpi", "rpiwachtwoordofzo"); // create a client object
std::string message = "stop";
std::string serializeKobukiData(const TKobukiData &data);
void sendKobukiData(TKobukiData &data);
void setup()
{
unsigned char *null_ptr(0);
robot.startCommunication("/dev/ttyUSB0", true, null_ptr);
//connect mqtt server and sub to commands
client.connect();
client.subscribe("home/commands");
}
int movement();
int checkCenterCliff();
void logToFile();
int main()
{
setup();
std::thread safety([&]() { robot.robotSafety(&message); });
std::thread sendMqtt([&]() { sendKobukiData(robot.parser.data); });
while(true){
parseMQTT(readMQTT());
}
sendMqtt.join();
safety.join();
unsigned char *null_ptr(0);
robot.startCommunication("/dev/ttyUSB0", true, null_ptr);
std::thread safety([&robot]()
{ robot.robotSafety(); }); // use a lambda function to call the member function
safety.detach();
thread movementThread(movement);
movementThread.join(); // so the program doesnt quit
return 0;
}
std::string readMQTT()
int checkCenterCliff()
{
message = client.getLastMessage();
if (!message.empty())
while (true)
{
std::cout << "MQTT Message: " << message << std::endl;
std::cout << robot.parser.data.CliffSensorRight << endl;
}
// Add a small delay to avoid busy-waiting
std::this_thread::sleep_for(std::chrono::milliseconds(100));
return message;
}
void parseMQTT(std::string message)
int movement()
{
if (message == "up")
int text;
while (true)
{
robot.forward(1024);
}
else if (message == "left")
{
robot.setRotationSpeed(4);
}
else if (message == "right")
{
robot.setRotationSpeed(-4);
}
else if (message == "down")
{
robot.forward(-800);
}
else if (message == "stop")
{
robot.sendNullMessage();
robot.sendNullMessage();
}
else if (message == "estop")
{
robot.forward(-400);
}
else
{
std::cout << "Invalid command" << std::endl;
cout << "gimme input: ";
cin >> text;
if (text == 1)
{
robot.forward(400);
}
else if (text == 2)
{
// 1 is full circle
robot.Rotate(90);
}
else if (text == 3)
{
// Add your code here for text == 3
}
else
{
try
{
robot.doRotation(text);
throw "NaN";
}
catch (const char *msg)
{
cerr << msg << endl;
}
}
}
}
@@ -149,127 +133,4 @@ void logToFile()
std::this_thread::sleep_for(std::chrono::seconds(2)); // Sleep for 2 seconds
}
}
void sendIndividualKobukiData(const TKobukiData &data) {
while (true) {
client.publishMessage("kobuki/data/timestamp", std::to_string(data.timestamp));
client.publishMessage("kobuki/data/BumperCenter", std::to_string(data.BumperCenter));
client.publishMessage("kobuki/data/BumperLeft", std::to_string(data.BumperLeft));
client.publishMessage("kobuki/data/BumperRight", std::to_string(data.BumperRight));
client.publishMessage("kobuki/data/WheelDropLeft", std::to_string(data.WheelDropLeft));
client.publishMessage("kobuki/data/WheelDropRight", std::to_string(data.WheelDropRight));
client.publishMessage("kobuki/data/CliffCenter", std::to_string(data.CliffCenter));
client.publishMessage("kobuki/data/CliffLeft", std::to_string(data.CliffLeft));
client.publishMessage("kobuki/data/CliffRight", std::to_string(data.CliffRight));
client.publishMessage("kobuki/data/EncoderLeft", std::to_string(data.EncoderLeft));
client.publishMessage("kobuki/data/EncoderRight", std::to_string(data.EncoderRight));
client.publishMessage("kobuki/data/PWMleft", std::to_string(data.PWMleft));
client.publishMessage("kobuki/data/PWMright", std::to_string(data.PWMright));
client.publishMessage("kobuki/data/ButtonPress1", std::to_string(data.ButtonPress1));
client.publishMessage("kobuki/data/ButtonPress2", std::to_string(data.ButtonPress2));
client.publishMessage("kobuki/data/ButtonPress3", std::to_string(data.ButtonPress3));
client.publishMessage("kobuki/data/Charger", std::to_string(data.Charger));
client.publishMessage("kobuki/data/Battery", std::to_string(data.Battery));
client.publishMessage("kobuki/data/overCurrent", std::to_string(data.overCurrent));
client.publishMessage("kobuki/data/IRSensorRight", std::to_string(data.IRSensorRight));
client.publishMessage("kobuki/data/IRSensorCenter", std::to_string(data.IRSensorCenter));
client.publishMessage("kobuki/data/IRSensorLeft", std::to_string(data.IRSensorLeft));
client.publishMessage("kobuki/data/GyroAngle", std::to_string(data.GyroAngle));
client.publishMessage("kobuki/data/GyroAngleRate", std::to_string(data.GyroAngleRate));
client.publishMessage("kobuki/data/CliffSensorRight", std::to_string(data.CliffSensorRight));
client.publishMessage("kobuki/data/CliffSensorCenter", std::to_string(data.CliffSensorCenter));
client.publishMessage("kobuki/data/CliffSensorLeft", std::to_string(data.CliffSensorLeft));
client.publishMessage("kobuki/data/wheelCurrentLeft", std::to_string(data.wheelCurrentLeft));
client.publishMessage("kobuki/data/wheelCurrentRight", std::to_string(data.wheelCurrentRight));
client.publishMessage("kobuki/data/digitalInput", std::to_string(data.digitalInput));
client.publishMessage("kobuki/data/analogInputCh0", std::to_string(data.analogInputCh0));
client.publishMessage("kobuki/data/analogInputCh1", std::to_string(data.analogInputCh1));
client.publishMessage("kobuki/data/analogInputCh2", std::to_string(data.analogInputCh2));
client.publishMessage("kobuki/data/analogInputCh3", std::to_string(data.analogInputCh3));
client.publishMessage("kobuki/data/frameId", std::to_string(data.frameId));
client.publishMessage("kobuki/data/extraInfo/HardwareVersionPatch", std::to_string(data.extraInfo.HardwareVersionPatch));
client.publishMessage("kobuki/data/extraInfo/HardwareVersionMinor", std::to_string(data.extraInfo.HardwareVersionMinor));
client.publishMessage("kobuki/data/extraInfo/HardwareVersionMajor", std::to_string(data.extraInfo.HardwareVersionMajor));
client.publishMessage("kobuki/data/extraInfo/FirmwareVersionPatch", std::to_string(data.extraInfo.FirmwareVersionPatch));
client.publishMessage("kobuki/data/extraInfo/FirmwareVersionMinor", std::to_string(data.extraInfo.FirmwareVersionMinor));
client.publishMessage("kobuki/data/extraInfo/FirmwareVersionMajor", std::to_string(data.extraInfo.FirmwareVersionMajor));
client.publishMessage("kobuki/data/extraInfo/UDID0", std::to_string(data.extraInfo.UDID0));
client.publishMessage("kobuki/data/extraInfo/UDID1", std::to_string(data.extraInfo.UDID1));
client.publishMessage("kobuki/data/extraInfo/UDID2", std::to_string(data.extraInfo.UDID2));
if (!data.gyroData.empty()) {
const auto& latestGyro = data.gyroData.back();
client.publishMessage("kobuki/data/gyroData/x", std::to_string(latestGyro.x));
client.publishMessage("kobuki/data/gyroData/y", std::to_string(latestGyro.y));
client.publishMessage("kobuki/data/gyroData/z", std::to_string(latestGyro.z));
}
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
}
}
std::string serializeKobukiData(const TKobukiData &data) {
std::string json = "{\"timestamp\":" + std::to_string(data.timestamp) +
",\"BumperCenter\":" + std::to_string(data.BumperCenter) +
",\"BumperLeft\":" + std::to_string(data.BumperLeft) +
",\"BumperRight\":" + std::to_string(data.BumperRight) +
",\"WheelDropLeft\":" + std::to_string(data.WheelDropLeft) +
",\"WheelDropRight\":" + std::to_string(data.WheelDropRight) +
",\"CliffCenter\":" + std::to_string(data.CliffCenter) +
",\"CliffLeft\":" + std::to_string(data.CliffLeft) +
",\"CliffRight\":" + std::to_string(data.CliffRight) +
",\"EncoderLeft\":" + std::to_string(data.EncoderLeft) +
",\"EncoderRight\":" + std::to_string(data.EncoderRight) +
",\"PWMleft\":" + std::to_string(data.PWMleft) +
",\"PWMright\":" + std::to_string(data.PWMright) +
",\"ButtonPress1\":" + std::to_string(data.ButtonPress1) +
",\"ButtonPress2\":" + std::to_string(data.ButtonPress2) +
",\"ButtonPress3\":" + std::to_string(data.ButtonPress3) +
",\"Charger\":" + std::to_string(data.Charger) +
",\"Battery\":" + std::to_string(data.Battery) +
",\"overCurrent\":" + std::to_string(data.overCurrent) +
",\"IRSensorRight\":" + std::to_string(data.IRSensorRight) +
",\"IRSensorCenter\":" + std::to_string(data.IRSensorCenter) +
",\"IRSensorLeft\":" + std::to_string(data.IRSensorLeft) +
",\"GyroAngle\":" + std::to_string(data.GyroAngle) +
",\"GyroAngleRate\":" + std::to_string(data.GyroAngleRate) +
",\"CliffSensorRight\":" + std::to_string(data.CliffSensorRight) +
",\"CliffSensorCenter\":" + std::to_string(data.CliffSensorCenter) +
",\"CliffSensorLeft\":" + std::to_string(data.CliffSensorLeft) +
",\"wheelCurrentLeft\":" + std::to_string(data.wheelCurrentLeft) +
",\"wheelCurrentRight\":" + std::to_string(data.wheelCurrentRight) +
",\"digitalInput\":" + std::to_string(data.digitalInput) +
",\"analogInputCh0\":" + std::to_string(data.analogInputCh0) +
",\"analogInputCh1\":" + std::to_string(data.analogInputCh1) +
",\"analogInputCh2\":" + std::to_string(data.analogInputCh2) +
",\"analogInputCh3\":" + std::to_string(data.analogInputCh3) +
",\"frameId\":" + std::to_string(data.frameId) +
",\"extraInfo\":{\"HardwareVersionPatch\":" + std::to_string(data.extraInfo.HardwareVersionPatch) +
",\"HardwareVersionMinor\":" + std::to_string(data.extraInfo.HardwareVersionMinor) +
",\"HardwareVersionMajor\":" + std::to_string(data.extraInfo.HardwareVersionMajor) +
",\"FirmwareVersionPatch\":" + std::to_string(data.extraInfo.FirmwareVersionPatch) +
",\"FirmwareVersionMinor\":" + std::to_string(data.extraInfo.FirmwareVersionMinor) +
",\"FirmwareVersionMajor\":" + std::to_string(data.extraInfo.FirmwareVersionMajor) +
",\"UDID0\":" + std::to_string(data.extraInfo.UDID0) +
",\"UDID1\":" + std::to_string(data.extraInfo.UDID1) +
",\"UDID2\":" + std::to_string(data.extraInfo.UDID2) + "},\"gyroData\":[";
if (!data.gyroData.empty()) {
const auto& latestGyro = data.gyroData.back();
json += "{\"x\":" + std::to_string(latestGyro.x) +
",\"y\":" + std::to_string(latestGyro.y) +
",\"z\":" + std::to_string(latestGyro.z) + "}";
}
json += "]}";
return json;
}
//create extra function to send the message every 100ms
//needed it so it can be threaded
void sendKobukiData(TKobukiData &data) {
while (true) {
client.publishMessage("kobuki/data", serializeKobukiData(data));
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
}
}
}

View File

@@ -1,61 +1,67 @@
#include "CKobuki.h"
#include "graph.h"
#include <cmath>
#include <iostream>
#include <cmath>
#include <thread>
#include "graph.h"
using namespace std;
// Globale instantie van de CKobuki-klasse
CKobuki robot;
// Functieprototypes
int command();
int checkCenterCliff();
int checkWheelDrop();
int main() {
// Start communicatie met de robot
unsigned char *null_ptr(0);
robot.startCommunication("/dev/ttyUSB0", true, null_ptr);
usleep(1 * 1000 * 1000);
// Start een nieuwe thread voor de command-functie
thread mv(command);
usleep(30 * 1000 * 1000);
mv.join(); // Wacht tot de command-thread klaar is
const int forward = 1;
const int ROTATE = 2;
int main()
{
unsigned char *null_ptr(0);
robot.startCommunication("/dev/ttyUSB0", true, null_ptr);
usleep(1 * 1000 * 1000);
thread mv(command);
usleep(30 * 1000 * 1000);
mv.join(); //only exit once thread one is done running
}
// Functie om commando's van de gebruiker te verwerken
int command() {
int input;
// int checkCenterCliff()
// {
// while (true)
// {
// std::cout << "cliffsensordata:" << robot.parser.data.CliffSensorCenter << std::endl;
// }
// }
while (true) {
// Vraag de gebruiker om een commando
std::cout << "choose between forward = 1 or rotate = 2" << endl;
std::cout << "What must the robot do?";
std::cin >> input;
// int checkWheelDrop(){
// while (true)
// {
// std::cout << "wheeldropdata:" << robot.parser.data.WheelDropLeft << std::endl;
// }
// }
// Verwerk de invoer van de gebruiker
switch (input) {
case 1: {
int distance;
std::cout << "Enter distance to move forward: ";
std::cin >> distance;
robot.goStraight(distance); // Beweeg de robot naar voren
} break;
int command(){
cout << "choose between forward and rotate" << endl;
cout << "What must the robot do?";
cin >> input;
case 2: {
int angle;
std::cout << "Enter angle to rotate in degrees: ";
std::cin >> angle;
robot.doRotation(angle); // Draai de robot
} break;
switch(input){
case forward:{
int distance;
std::cout >> "Enter distance to move forward: ";
std::cin >> distance;
robot.goStraight(distance);
}
case ROTATE:{
int angle;
std::cout >> "Enter angle to rotate: ";
std::cin >> angle;
robot.doRotation(angle);
}
robot.goStraight(-1);
break;
default:
cout << "Invalid input" << endl;
break;
}
}
default:
cout << "Invalid input" << endl; // Ongeldige invoer
break;
}
}
}

View File

@@ -1,15 +0,0 @@
cmake_minimum_required(VERSION 3.10)
set(CMAKE_CXX_STANDARD 23)
# Find the Paho MQTT C++ library
find_library(PAHO_MQTTPP_LIBRARY paho-mqttpp3 PATHS /usr/local/lib)
find_library(PAHO_MQTT_LIBRARY paho-mqtt3a PATHS /usr/local/lib)
# Include the headers
include_directories(/usr/local/include)
# Add the executable
add_executable(my_program main.cpp)
# Link the libraries
target_link_libraries(my_program ${PAHO_MQTTPP_LIBRARY} ${PAHO_MQTT_LIBRARY})

View File

@@ -1,64 +0,0 @@
#include <iostream>
#include <mqtt/async_client.h>
#include <thread> // For std::this_thread::sleep_for
#include <chrono> // For std::chrono::seconds
// Define the address of the MQTT broker, the client ID, and the topic to subscribe to.
const std::string ADDRESS("mqtt://localhost:1883"); // Broker address (Raspberry Pi)
const std::string CLIENT_ID("raspberry_pi_client");
const std::string TOPIC("home/commands");
// Define a callback class that handles incoming messages and connection events.
class callback : public virtual mqtt::callback {
// Called when a message arrives on a subscribed topic.
void message_arrived(mqtt::const_message_ptr msg) override {
std::cout << "Received message: '" << msg->get_topic()<< "' : " << msg->to_string() << std::endl;
}
// Called when the connection to the broker is lost.
void connection_lost(const std::string& cause) override {
std::cerr << "Connection lost. Reason: " << cause << std::endl;
}
// Called when a message delivery is complete.
void delivery_complete(mqtt::delivery_token_ptr token) override {
std::cout << "Message delivered!" << std::endl;
}
};
int main() {
// Create an MQTT async client and set up the callback class.
mqtt::async_client client(ADDRESS, CLIENT_ID);
callback cb;
client.set_callback(cb);
// Set up the connection options (such as username and password).
mqtt::connect_options connOpts;
connOpts.set_clean_session(true);
connOpts.set_user_name("ishak");
connOpts.set_password("kobuki");
connOpts.set_mqtt_version(MQTTVERSION_3_1_1);
try {
// Try to connect to the broker and wait until successful.
std::cout << "Connecting to broker..." << std::endl;
client.connect(connOpts)->wait(); // Connect with the provided options
std::cout << "Connected!" << std::endl;
// Subscribe to the specified topic and wait for confirmation.
std::cout << "Subscribing to topic: " << TOPIC << std::endl;
client.subscribe(TOPIC, 1)->wait(); // Subscribe with QoS level 1
// Keep the program running to continue receiving messages from the broker.
while (true) {
std::this_thread::sleep_for(std::chrono::seconds(1)); // Sleep to reduce CPU usage
}
} catch (const mqtt::exception &exc) {
// Catch any MQTT exceptions and display the error message.
std::cerr << "Error: " << exc.what() << std::endl;
return 1;
}
return 0; // Return 0 to indicate successful execution
}

View File

@@ -1,503 +0,0 @@
/*
TinyGPS++ - a small GPS library for Arduino providing universal NMEA parsing
Based on work by and "distanceBetween" and "courseTo" courtesy of Maarten Lamers.
Suggestion to add satellites, courseTo(), and cardinal() by Matt Monson.
Location precision improvements suggested by Wayne Holder.
Copyright (C) 2008-2013 Mikal Hart
All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "TinyGPS++.h"
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#define _GPRMCterm "GPRMC"
#define _GPGGAterm "GPGGA"
#define _GNRMCterm "GNRMC"
#define _GNGGAterm "GNGGA"
TinyGPSPlus::TinyGPSPlus()
: parity(0)
, isChecksumTerm(false)
, curSentenceType(GPS_SENTENCE_OTHER)
, curTermNumber(0)
, curTermOffset(0)
, sentenceHasFix(false)
, customElts(0)
, customCandidates(0)
, encodedCharCount(0)
, sentencesWithFixCount(0)
, failedChecksumCount(0)
, passedChecksumCount(0)
{
term[0] = '\0';
}
//
// public methods
//
bool TinyGPSPlus::encode(char c)
{
++encodedCharCount;
switch(c)
{
case ',': // term terminators
parity ^= (uint8_t)c;
case '\r':
case '\n':
case '*':
{
bool isValidSentence = false;
if (curTermOffset < sizeof(term))
{
term[curTermOffset] = 0;
isValidSentence = endOfTermHandler();
}
++curTermNumber;
curTermOffset = 0;
isChecksumTerm = c == '*';
return isValidSentence;
}
break;
case '$': // sentence begin
curTermNumber = curTermOffset = 0;
parity = 0;
curSentenceType = GPS_SENTENCE_OTHER;
isChecksumTerm = false;
sentenceHasFix = false;
return false;
default: // ordinary characters
if (curTermOffset < sizeof(term) - 1)
term[curTermOffset++] = c;
if (!isChecksumTerm)
parity ^= c;
return false;
}
return false;
}
//
// internal utilities
//
int TinyGPSPlus::fromHex(char a)
{
if (a >= 'A' && a <= 'F')
return a - 'A' + 10;
else if (a >= 'a' && a <= 'f')
return a - 'a' + 10;
else
return a - '0';
}
// static
// Parse a (potentially negative) number with up to 2 decimal digits -xxxx.yy
int32_t TinyGPSPlus::parseDecimal(const char *term)
{
bool negative = *term == '-';
if (negative) ++term;
int32_t ret = 100 * (int32_t)atol(term);
while (isdigit(*term)) ++term;
if (*term == '.' && isdigit(term[1]))
{
ret += 10 * (term[1] - '0');
if (isdigit(term[2]))
ret += term[2] - '0';
}
return negative ? -ret : ret;
}
// static
// Parse degrees in that funny NMEA format DDMM.MMMM
void TinyGPSPlus::parseDegrees(const char *term, RawDegrees &deg)
{
uint32_t leftOfDecimal = (uint32_t)atol(term);
uint16_t minutes = (uint16_t)(leftOfDecimal % 100);
uint32_t multiplier = 10000000UL;
uint32_t tenMillionthsOfMinutes = minutes * multiplier;
deg.deg = (int16_t)(leftOfDecimal / 100);
while (isdigit(*term))
++term;
if (*term == '.')
while (isdigit(*++term))
{
multiplier /= 10;
tenMillionthsOfMinutes += (*term - '0') * multiplier;
}
deg.billionths = (5 * tenMillionthsOfMinutes + 1) / 3;
deg.negative = false;
}
#define COMBINE(sentence_type, term_number) (((unsigned)(sentence_type) << 5) | term_number)
// Processes a just-completed term
// Returns true if new sentence has just passed checksum test and is validated
bool TinyGPSPlus::endOfTermHandler()
{
// If it's the checksum term, and the checksum checks out, commit
if (isChecksumTerm)
{
byte checksum = 16 * fromHex(term[0]) + fromHex(term[1]);
if (checksum == parity)
{
passedChecksumCount++;
if (sentenceHasFix)
++sentencesWithFixCount;
switch(curSentenceType)
{
case GPS_SENTENCE_GPRMC:
date.commit();
time.commit();
if (sentenceHasFix)
{
location.commit();
speed.commit();
course.commit();
}
break;
case GPS_SENTENCE_GPGGA:
time.commit();
if (sentenceHasFix)
{
location.commit();
altitude.commit();
}
satellites.commit();
hdop.commit();
break;
}
// Commit all custom listeners of this sentence type
for (TinyGPSCustom *p = customCandidates; p != NULL && strcmp(p->sentenceName, customCandidates->sentenceName) == 0; p = p->next)
p->commit();
return true;
}
else
{
++failedChecksumCount;
}
return false;
}
// the first term determines the sentence type
if (curTermNumber == 0)
{
if (!strcmp(term, _GPRMCterm) || !strcmp(term, _GNRMCterm))
curSentenceType = GPS_SENTENCE_GPRMC;
else if (!strcmp(term, _GPGGAterm) || !strcmp(term, _GNGGAterm))
curSentenceType = GPS_SENTENCE_GPGGA;
else
curSentenceType = GPS_SENTENCE_OTHER;
// Any custom candidates of this sentence type?
for (customCandidates = customElts; customCandidates != NULL && strcmp(customCandidates->sentenceName, term) < 0; customCandidates = customCandidates->next);
if (customCandidates != NULL && strcmp(customCandidates->sentenceName, term) > 0)
customCandidates = NULL;
return false;
}
if (curSentenceType != GPS_SENTENCE_OTHER && term[0])
switch(COMBINE(curSentenceType, curTermNumber))
{
case COMBINE(GPS_SENTENCE_GPRMC, 1): // Time in both sentences
case COMBINE(GPS_SENTENCE_GPGGA, 1):
time.setTime(term);
break;
case COMBINE(GPS_SENTENCE_GPRMC, 2): // GPRMC validity
sentenceHasFix = term[0] == 'A';
break;
case COMBINE(GPS_SENTENCE_GPRMC, 3): // Latitude
case COMBINE(GPS_SENTENCE_GPGGA, 2):
location.setLatitude(term);
break;
case COMBINE(GPS_SENTENCE_GPRMC, 4): // N/S
case COMBINE(GPS_SENTENCE_GPGGA, 3):
location.rawNewLatData.negative = term[0] == 'S';
break;
case COMBINE(GPS_SENTENCE_GPRMC, 5): // Longitude
case COMBINE(GPS_SENTENCE_GPGGA, 4):
location.setLongitude(term);
break;
case COMBINE(GPS_SENTENCE_GPRMC, 6): // E/W
case COMBINE(GPS_SENTENCE_GPGGA, 5):
location.rawNewLngData.negative = term[0] == 'W';
break;
case COMBINE(GPS_SENTENCE_GPRMC, 7): // Speed (GPRMC)
speed.set(term);
break;
case COMBINE(GPS_SENTENCE_GPRMC, 8): // Course (GPRMC)
course.set(term);
break;
case COMBINE(GPS_SENTENCE_GPRMC, 9): // Date (GPRMC)
date.setDate(term);
break;
case COMBINE(GPS_SENTENCE_GPGGA, 6): // Fix data (GPGGA)
sentenceHasFix = term[0] > '0';
break;
case COMBINE(GPS_SENTENCE_GPGGA, 7): // Satellites used (GPGGA)
satellites.set(term);
break;
case COMBINE(GPS_SENTENCE_GPGGA, 8): // HDOP
hdop.set(term);
break;
case COMBINE(GPS_SENTENCE_GPGGA, 9): // Altitude (GPGGA)
altitude.set(term);
break;
}
// Set custom values as needed
for (TinyGPSCustom *p = customCandidates; p != NULL && strcmp(p->sentenceName, customCandidates->sentenceName) == 0 && p->termNumber <= curTermNumber; p = p->next)
if (p->termNumber == curTermNumber)
p->set(term);
return false;
}
/* static */
double TinyGPSPlus::distanceBetween(double lat1, double long1, double lat2, double long2)
{
// returns distance in meters between two positions, both specified
// as signed decimal-degrees latitude and longitude. Uses great-circle
// distance computation for hypothetical sphere of radius 6372795 meters.
// Because Earth is no exact sphere, rounding errors may be up to 0.5%.
// Courtesy of Maarten Lamers
double delta = radians(long1-long2);
double sdlong = sin(delta);
double cdlong = cos(delta);
lat1 = radians(lat1);
lat2 = radians(lat2);
double slat1 = sin(lat1);
double clat1 = cos(lat1);
double slat2 = sin(lat2);
double clat2 = cos(lat2);
delta = (clat1 * slat2) - (slat1 * clat2 * cdlong);
delta = sq(delta);
delta += sq(clat2 * sdlong);
delta = sqrt(delta);
double denom = (slat1 * slat2) + (clat1 * clat2 * cdlong);
delta = atan2(delta, denom);
return delta * 6372795;
}
double TinyGPSPlus::courseTo(double lat1, double long1, double lat2, double long2)
{
// returns course in degrees (North=0, West=270) from position 1 to position 2,
// both specified as signed decimal-degrees latitude and longitude.
// Because Earth is no exact sphere, calculated course may be off by a tiny fraction.
// Courtesy of Maarten Lamers
double dlon = radians(long2-long1);
lat1 = radians(lat1);
lat2 = radians(lat2);
double a1 = sin(dlon) * cos(lat2);
double a2 = sin(lat1) * cos(lat2) * cos(dlon);
a2 = cos(lat1) * sin(lat2) - a2;
a2 = atan2(a1, a2);
if (a2 < 0.0)
{
a2 += TWO_PI;
}
return degrees(a2);
}
const char *TinyGPSPlus::cardinal(double course)
{
static const char* directions[] = {"N", "NNE", "NE", "ENE", "E", "ESE", "SE", "SSE", "S", "SSW", "SW", "WSW", "W", "WNW", "NW", "NNW"};
int direction = (int)((course + 11.25f) / 22.5f);
return directions[direction % 16];
}
void TinyGPSLocation::commit()
{
rawLatData = rawNewLatData;
rawLngData = rawNewLngData;
lastCommitTime = millis();
valid = updated = true;
}
void TinyGPSLocation::setLatitude(const char *term)
{
TinyGPSPlus::parseDegrees(term, rawNewLatData);
}
void TinyGPSLocation::setLongitude(const char *term)
{
TinyGPSPlus::parseDegrees(term, rawNewLngData);
}
double TinyGPSLocation::lat()
{
updated = false;
double ret = rawLatData.deg + rawLatData.billionths / 1000000000.0;
return rawLatData.negative ? -ret : ret;
}
double TinyGPSLocation::lng()
{
updated = false;
double ret = rawLngData.deg + rawLngData.billionths / 1000000000.0;
return rawLngData.negative ? -ret : ret;
}
void TinyGPSDate::commit()
{
date = newDate;
lastCommitTime = millis();
valid = updated = true;
}
void TinyGPSTime::commit()
{
time = newTime;
lastCommitTime = millis();
valid = updated = true;
}
void TinyGPSTime::setTime(const char *term)
{
newTime = (uint32_t)TinyGPSPlus::parseDecimal(term);
}
void TinyGPSDate::setDate(const char *term)
{
newDate = atol(term);
}
uint16_t TinyGPSDate::year()
{
updated = false;
uint16_t year = date % 100;
return year + 2000;
}
uint8_t TinyGPSDate::month()
{
updated = false;
return (date / 100) % 100;
}
uint8_t TinyGPSDate::day()
{
updated = false;
return date / 10000;
}
uint8_t TinyGPSTime::hour()
{
updated = false;
return time / 1000000;
}
uint8_t TinyGPSTime::minute()
{
updated = false;
return (time / 10000) % 100;
}
uint8_t TinyGPSTime::second()
{
updated = false;
return (time / 100) % 100;
}
uint8_t TinyGPSTime::centisecond()
{
updated = false;
return time % 100;
}
void TinyGPSDecimal::commit()
{
val = newval;
lastCommitTime = millis();
valid = updated = true;
}
void TinyGPSDecimal::set(const char *term)
{
newval = TinyGPSPlus::parseDecimal(term);
}
void TinyGPSInteger::commit()
{
val = newval;
lastCommitTime = millis();
valid = updated = true;
}
void TinyGPSInteger::set(const char *term)
{
newval = atol(term);
}
TinyGPSCustom::TinyGPSCustom(TinyGPSPlus &gps, const char *_sentenceName, int _termNumber)
{
begin(gps, _sentenceName, _termNumber);
}
void TinyGPSCustom::begin(TinyGPSPlus &gps, const char *_sentenceName, int _termNumber)
{
lastCommitTime = 0;
updated = valid = false;
sentenceName = _sentenceName;
termNumber = _termNumber;
memset(stagingBuffer, '\0', sizeof(stagingBuffer));
memset(buffer, '\0', sizeof(buffer));
// Insert this item into the GPS tree
gps.insertCustom(this, _sentenceName, _termNumber);
}
void TinyGPSCustom::commit()
{
strcpy(this->buffer, this->stagingBuffer);
lastCommitTime = millis();
valid = updated = true;
}
void TinyGPSCustom::set(const char *term)
{
strncpy(this->stagingBuffer, term, sizeof(this->stagingBuffer));
}
void TinyGPSPlus::insertCustom(TinyGPSCustom *pElt, const char *sentenceName, int termNumber)
{
TinyGPSCustom **ppelt;
for (ppelt = &this->customElts; *ppelt != NULL; ppelt = &(*ppelt)->next)
{
int cmp = strcmp(sentenceName, (*ppelt)->sentenceName);
if (cmp < 0 || (cmp == 0 && termNumber < (*ppelt)->termNumber))
break;
}
pElt->next = *ppelt;
*ppelt = pElt;
}

View File

@@ -1,278 +0,0 @@
/*
TinyGPS++ - a small GPS library for Arduino providing universal NMEA parsing
Based on work by and "distanceBetween" and "courseTo" courtesy of Maarten Lamers.
Suggestion to add satellites, courseTo(), and cardinal() by Matt Monson.
Location precision improvements suggested by Wayne Holder.
Copyright (C) 2008-2022 Mikal Hart
All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __TinyGPSPlus_h
#define __TinyGPSPlus_h
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include <limits.h>
#define _GPS_VERSION "1.0.3" // software version of this library
#define _GPS_MPH_PER_KNOT 1.15077945
#define _GPS_MPS_PER_KNOT 0.51444444
#define _GPS_KMPH_PER_KNOT 1.852
#define _GPS_MILES_PER_METER 0.00062137112
#define _GPS_KM_PER_METER 0.001
#define _GPS_FEET_PER_METER 3.2808399
#define _GPS_MAX_FIELD_SIZE 15
struct RawDegrees
{
uint16_t deg;
uint32_t billionths;
bool negative;
public:
RawDegrees() : deg(0), billionths(0), negative(false)
{}
};
struct TinyGPSLocation
{
friend class TinyGPSPlus;
public:
bool isValid() const { return valid; }
bool isUpdated() const { return updated; }
uint32_t age() const { return valid ? millis() - lastCommitTime : (uint32_t)ULONG_MAX; }
const RawDegrees &rawLat() { updated = false; return rawLatData; }
const RawDegrees &rawLng() { updated = false; return rawLngData; }
double lat();
double lng();
TinyGPSLocation() : valid(false), updated(false)
{}
private:
bool valid, updated;
RawDegrees rawLatData, rawLngData, rawNewLatData, rawNewLngData;
uint32_t lastCommitTime;
void commit();
void setLatitude(const char *term);
void setLongitude(const char *term);
};
struct TinyGPSDate
{
friend class TinyGPSPlus;
public:
bool isValid() const { return valid; }
bool isUpdated() const { return updated; }
uint32_t age() const { return valid ? millis() - lastCommitTime : (uint32_t)ULONG_MAX; }
uint32_t value() { updated = false; return date; }
uint16_t year();
uint8_t month();
uint8_t day();
TinyGPSDate() : valid(false), updated(false), date(0)
{}
private:
bool valid, updated;
uint32_t date, newDate;
uint32_t lastCommitTime;
void commit();
void setDate(const char *term);
};
struct TinyGPSTime
{
friend class TinyGPSPlus;
public:
bool isValid() const { return valid; }
bool isUpdated() const { return updated; }
uint32_t age() const { return valid ? millis() - lastCommitTime : (uint32_t)ULONG_MAX; }
uint32_t value() { updated = false; return time; }
uint8_t hour();
uint8_t minute();
uint8_t second();
uint8_t centisecond();
TinyGPSTime() : valid(false), updated(false), time(0)
{}
private:
bool valid, updated;
uint32_t time, newTime;
uint32_t lastCommitTime;
void commit();
void setTime(const char *term);
};
struct TinyGPSDecimal
{
friend class TinyGPSPlus;
public:
bool isValid() const { return valid; }
bool isUpdated() const { return updated; }
uint32_t age() const { return valid ? millis() - lastCommitTime : (uint32_t)ULONG_MAX; }
int32_t value() { updated = false; return val; }
TinyGPSDecimal() : valid(false), updated(false), val(0)
{}
private:
bool valid, updated;
uint32_t lastCommitTime;
int32_t val, newval;
void commit();
void set(const char *term);
};
struct TinyGPSInteger
{
friend class TinyGPSPlus;
public:
bool isValid() const { return valid; }
bool isUpdated() const { return updated; }
uint32_t age() const { return valid ? millis() - lastCommitTime : (uint32_t)ULONG_MAX; }
uint32_t value() { updated = false; return val; }
TinyGPSInteger() : valid(false), updated(false), val(0)
{}
private:
bool valid, updated;
uint32_t lastCommitTime;
uint32_t val, newval;
void commit();
void set(const char *term);
};
struct TinyGPSSpeed : TinyGPSDecimal
{
double knots() { return value() / 100.0; }
double mph() { return _GPS_MPH_PER_KNOT * value() / 100.0; }
double mps() { return _GPS_MPS_PER_KNOT * value() / 100.0; }
double kmph() { return _GPS_KMPH_PER_KNOT * value() / 100.0; }
};
struct TinyGPSCourse : public TinyGPSDecimal
{
double deg() { return value() / 100.0; }
};
struct TinyGPSAltitude : TinyGPSDecimal
{
double meters() { return value() / 100.0; }
double miles() { return _GPS_MILES_PER_METER * value() / 100.0; }
double kilometers() { return _GPS_KM_PER_METER * value() / 100.0; }
double feet() { return _GPS_FEET_PER_METER * value() / 100.0; }
};
struct TinyGPSHDOP : TinyGPSDecimal
{
double hdop() { return value() / 100.0; }
};
class TinyGPSPlus;
class TinyGPSCustom
{
public:
TinyGPSCustom() {};
TinyGPSCustom(TinyGPSPlus &gps, const char *sentenceName, int termNumber);
void begin(TinyGPSPlus &gps, const char *_sentenceName, int _termNumber);
bool isUpdated() const { return updated; }
bool isValid() const { return valid; }
uint32_t age() const { return valid ? millis() - lastCommitTime : (uint32_t)ULONG_MAX; }
const char *value() { updated = false; return buffer; }
private:
void commit();
void set(const char *term);
char stagingBuffer[_GPS_MAX_FIELD_SIZE + 1];
char buffer[_GPS_MAX_FIELD_SIZE + 1];
unsigned long lastCommitTime;
bool valid, updated;
const char *sentenceName;
int termNumber;
friend class TinyGPSPlus;
TinyGPSCustom *next;
};
class TinyGPSPlus
{
public:
TinyGPSPlus();
bool encode(char c); // process one character received from GPS
TinyGPSPlus &operator << (char c) {encode(c); return *this;}
TinyGPSLocation location;
TinyGPSDate date;
TinyGPSTime time;
TinyGPSSpeed speed;
TinyGPSCourse course;
TinyGPSAltitude altitude;
TinyGPSInteger satellites;
TinyGPSHDOP hdop;
static const char *libraryVersion() { return _GPS_VERSION; }
static double distanceBetween(double lat1, double long1, double lat2, double long2);
static double courseTo(double lat1, double long1, double lat2, double long2);
static const char *cardinal(double course);
static int32_t parseDecimal(const char *term);
static void parseDegrees(const char *term, RawDegrees &deg);
uint32_t charsProcessed() const { return encodedCharCount; }
uint32_t sentencesWithFix() const { return sentencesWithFixCount; }
uint32_t failedChecksum() const { return failedChecksumCount; }
uint32_t passedChecksum() const { return passedChecksumCount; }
private:
enum {GPS_SENTENCE_GPGGA, GPS_SENTENCE_GPRMC, GPS_SENTENCE_OTHER};
// parsing state variables
uint8_t parity;
bool isChecksumTerm;
char term[_GPS_MAX_FIELD_SIZE];
uint8_t curSentenceType;
uint8_t curTermNumber;
uint8_t curTermOffset;
bool sentenceHasFix;
// custom element support
friend class TinyGPSCustom;
TinyGPSCustom *customElts;
TinyGPSCustom *customCandidates;
void insertCustom(TinyGPSCustom *pElt, const char *sentenceName, int index);
// statistics
uint32_t encodedCharCount;
uint32_t sentencesWithFixCount;
uint32_t failedChecksumCount;
uint32_t passedChecksumCount;
// internal utilities
int fromHex(char a);
bool endOfTermHandler();
};
#endif // def(__TinyGPSPlus_h)

View File

@@ -1,26 +0,0 @@
/*
TinyGPSPlus - a small GPS library for Arduino providing universal NMEA parsing
Based on work by and "distanceBetween" and "courseTo" courtesy of Maarten Lamers.
Suggestion to add satellites, courseTo(), and cardinal() by Matt Monson.
Location precision improvements suggested by Wayne Holder.
Copyright (C) 2008-2013 Mikal Hart
All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __TinyGPSPlus_h
#include "TinyGPS++.h"
#endif

BIN
src/C++/Socket/a.out Executable file

Binary file not shown.

53
src/C++/Socket/main.cpp Normal file
View File

@@ -0,0 +1,53 @@
#include <iostream>
#include <boost/asio.hpp>
#include <string>
using boost::asio::ip::tcp;
int main() {
try {
// Create an io_context object
boost::asio::io_context io_context;
// Resolve the server address and port
tcp::resolver resolver(io_context);
tcp::resolver::results_type endpoints = resolver.resolve("127.0.0.1", "4024");
// Create and connect the socket
tcp::socket socket(io_context);
boost::asio::connect(socket, endpoints);
std::cout << "Connected to the server." << std::endl;
// Receive initial message from the server
boost::asio::streambuf buffer;
boost::asio::read_until(socket, buffer, "\n");
std::istream is(&buffer);
std::string initial_message;
std::getline(is, initial_message);
std::cout << "Initial message from server: " << initial_message << std::endl;
// Send and receive messages
while (true) {
// Send a message to the server
std::string message;
std::cout << "Enter message: ";
std::getline(std::cin, message);
message += "\n"; // Add newline to mark the end of the message
boost::asio::write(socket, boost::asio::buffer(message));
// Receive a response from the server
boost::asio::streambuf response_buffer;
boost::asio::read_until(socket, response_buffer, "\n");
std::istream response_stream(&response_buffer);
std::string reply;
std::getline(response_stream, reply);
std::cout << "Reply from server: " << reply << std::endl;
}
} catch (std::exception& e) {
std::cerr << "Exception: " << e.what() << std::endl;
}
return 0;
}

View File

@@ -1,56 +1,17 @@
from flask import Flask, request, render_template, jsonify
import paho.mqtt.client as mqtt
from flask import Flask, render_template
app = Flask(__name__)
kobuki_message = "empty"
def on_message(client, userdata, message):
global kobuki_message #set scope for this variable
kobuki_message = str(message.payload.decode("utf-8"))
print(kobuki_message)
# Create an MQTT client instance
mqtt_client = mqtt.Client()
mqtt_client.username_pw_set("server", "serverwachtwoordofzo")
mqtt_client.connect("localhost", 80, 60)
mqtt_client.loop_start()
mqtt_client.subscribe("kobuki/data")
mqtt_client.on_message = on_message # this lines needs to be under the function definition otherwise it cant find which function it needs to use
@app.route('/')
def index():
return render_template('index.html')
@app.route('/control', methods=["GET","POST"])
@app.route('/control', methods=['POST'])
def control():
if request.authorization and request.authorization.username == 'ishak' and request.authorization.password == 'kobuki':
return render_template('control.html')
else:
return ('Unauthorized', 401, {'WWW-Authenticate': 'Basic realm="Login Required"'})
@app.route('/move', methods=['POST'])
def move():
data = request.get_json()
direction = data.get("direction")
# Verstuur de richting via MQTT
if direction:
mqtt_client.publish("home/commands", direction) # Het topic kan aangepast worden
return jsonify({"status": "success", "direction": direction})
@app.route('/data', methods=['GET'])
def data():
return kobuki_message
@app.route('/phpmyadmin/<path:path>')
def phpmyadmin_passthrough(path):
# Laat Apache deze route direct afhandelen
return "", 404
return("hello")
if __name__ == '__main__':
app.run(debug=True, port=5000)
app.run(debug=True)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 200 KiB

View File

@@ -1,47 +0,0 @@
// Selecteer alle knoppen en voeg een event listener toe aan elke knop
document.querySelectorAll(".btn").forEach(button => {
button.addEventListener("click", function(event) {
event.preventDefault(); // voorkomt pagina-verversing
// Haal de waarde van de knop op
const direction = event.target.value;
fetch("/move", {
method: "POST",
headers: {
"Content-Type": "application/json"
},
body: JSON.stringify({ direction: direction })
})
.then(response => response.json())
.then(data => {
console.log("Success:", data);
})
.catch(error => {
console.error("Error:", error);
});
});
// Fetch data from the server
async function fetchData() {
const response = await fetch("/data");
const data = await response.json();
return data;
}
// Parse the data and show it on the website
async function parseData() {
const data = await fetchData();
const sensorDataContainer = document.getElementById("sensor-data");
sensorDataContainer.innerHTML = ""; // Clear previous data
//for each object in json array create a new paragraph element and append it to the sensorDataContainer
for (const [key, value] of Object.entries(data)) {
const dataElement = document.createElement("p");
dataElement.textContent = `${key}: ${value}`;
sensorDataContainer.appendChild(dataElement);
}
}
// Fetch and display sensor data every 5 seconds
setInterval(parseData, 5000);
});

View File

@@ -1,8 +1,8 @@
body {
font-family: "Poppins", sans-serif;
text-align: -webkit-center;
margin: 0;
padding: 0;
font-family: 'Poppins', sans-serif;
text-align: -webkit-center;
margin: 0;
padding: 0;
}
/* This is my code for my navbar */
@@ -10,23 +10,7 @@ body {
.navbar {
display: flex;
justify-content: space-between;
max-width: 80%;
background-color: #fff;
border: 1px solid #f0f0f0;
border-radius: 50px;
align-items: center;
margin: 1.5rem auto 0 auto;
padding: 0 30px;
top: 0%;
bottom: auto;
left: 0%;
right: 0%;
}
.footer{
display: flex;
justify-content: space-between;
max-width: 80%;
max-width: 70rem;
background-color: #fff;
border: 1px solid #f0f0f0;
border-radius: 50px;
@@ -45,126 +29,93 @@ body {
}
.connectButton {
border-radius: 10px;
height: 100%;
width: 100px;
box-shadow: none;
border: none;
font-size: 1rem;
height: 40px;
background-color: #b3ffb3;
}
border-radius: 10px;
height: 100%;
width: 100px;
box-shadow: none;
border: none;
font-size: 1rem;
height: 40px;
background-color: #b3ffb3;
}
/* end navbar */
.container {
display: flex;
justify-content: space-around;
align-items: center;
margin-top: 50px;
width: 80%;
background-color: white;
border-radius: 20px;
box-shadow: 0px 8px 16px rgba(0, 0, 0, 0.2);
padding: 40px;
display: flex;
justify-content: space-around;
align-items: center;
margin-top: 50px;
width: 80%;
background-color: white;
border-radius: 20px;
box-shadow: 0px 8px 16px rgba(0, 0, 0, 0.2);
padding: 40px;
}
.button-section {
position: relative;
width: 150px;
height: 150px;
position: relative;
width: 150px;
height: 150px;
margin-left: auto;
margin-right: auto;
}
.btn {
position: absolute;
background-color: #007bff;
color: white;
border: none;
border-radius: 50%;
width: 60px;
height: 60px;
font-size: 1.2em;
text-align: center;
line-height: 60px;
cursor: pointer;
transition: transform 0.2s ease, background-color 0.2s ease;
position: absolute;
background-color: #007BFF;
color: white;
border: none;
border-radius: 50%;
width: 60px;
height: 60px;
font-size: 1.2em;
text-align: center;
line-height: 60px;
cursor: pointer;
transition: transform 0.2s ease, background-color 0.2s ease;
}
.text{
width: 50%;
}
.image{
height: 100%;
}
.sectionHeight{
height: 200px;
}
/* Direction buttons */
/* Middenknop */
.btn:nth-child(1) {
/* Left */
top: 50%;
left: 50%;
transform: translate(-160%, -50%);
top: 50%;
left: 50%;
transform: translate(-125%, -50%);
}
/* Knop boven */
.btn:nth-child(2) {
/* Up */
top: 0;
left: 50%;
transform: translate(-50%, -35%);
top: 0;
left: 50%;
transform: translateX(-50%);
}
/* Knop rechts */
.btn:nth-child(3) {
/* Right */
top: 50%;
right: 0;
transform: translate(35%, -50%);
top: 50%;
right: 0;
transform: translateY(-50%);
}
/* Knop onder */
.btn:nth-child(4) {
/* Down */
bottom: 0;
left: 50%;
transform: translate(-50%, 35%);
bottom: 0;
left: 50%;
transform: translateX(-50%);
}
/* Knop links */
.btn:nth-child(5) {
/* Stop Button */
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
background-color: red; /* Distinct color for the stop button */
width: 60px; /* Slightly larger for emphasis */
height: 60px; /* Slightly larger for emphasis */
line-height: 60px; /* Center text vertically */
top: 50%;
left: 0;
transform: translateY(-50%);
}
/* Hover effects */
.btn:hover {
background-color: #0056b3;
background-color: #0056b3;
/* transform: scale(1.1); */
}
.btn:active {
background-color: #004494;
}
.stop-button:hover {
background-color: darkred; /* Different hover color for the stop button */
}
table {
width: 100%;
border-collapse: collapse;
}
th,td {
border: 1px solid #ddd;
padding: 8px;
}
th {
background-color: #f2f2f2;
text-align: left;
background-color: #004494;
}

View File

@@ -1,73 +0,0 @@
body {
font-family: Arial, sans-serif;
margin: 0;
padding: 0;
background-color: #f4f4f4;
}
header {
background-color: #333;
color: #fff;
padding: 1rem 0;
text-align: center;
}
header h1 {
margin: 0;
}
nav ul {
list-style: none;
padding: 0;
}
nav ul li {
display: inline;
margin: 0 1rem;
}
nav ul li a {
color: #fff;
text-decoration: none;
}
section {
padding: 2rem;
margin: 1rem 0;
background-color: #fff;
border-radius: 8px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
}
section h2 {
margin-top: 0;
}
form {
display: flex;
flex-direction: column;
}
form label {
margin: 0.5rem 0 0.2rem;
}
form input, form textarea {
padding: 0.5rem;
margin-bottom: 1rem;
border: 1px solid #ccc;
border-radius: 4px;
}
form button {
padding: 0.7rem;
border: none;
border-radius: 4px;
background-color: #333;
color: #fff;
cursor: pointer;
}
form button:hover {
background-color: #555;
}

View File

@@ -8,9 +8,8 @@
{% block head %}{% endblock %}
</head>
<body>
{% include 'navbar.html' %}
{% include 'navbar.html' %}
{% block content %}
{% endblock %}
</body>
</html>

View File

@@ -1,48 +0,0 @@
{% extends 'base.html' %} {% block head %}
<link rel="stylesheet" href="../static/style.css" />
{% endblock %} {% block content %}
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Kobuki</title>
<link rel="stylesheet" href="../static/style.css" />
</head>
<body>
<div class="container">
<div class="image-section">
<img src="kobuki.jpg" alt="Kobuki Robot" id="robot-image" />
</div>
<div class="button-section">
<form id="form" action="/move" method="post">
<button class="btn" name="direction" value="left"></button>
<button class="btn" name="direction" value="up"></button>
<button class="btn" name="direction" value="right"></button>
<button class="btn" name="direction" value="down"></button>
<button class="btn stop-button" name="direction" value="stop">
Stop
</button>
</form>
</div>
</div>
<div class="container">
<h1>Sensor Data</h1>
<div class="data">
<table id="sensor-data"> <!-- Do not change -->
<thead>
<tr>
<th>Sensor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<!-- Sensor data rows will be inserted here -->
</tbody>
</table>
</div>
</div>
<script src="../static/script.js"></script>
</body>
</html>
{% endblock %}

View File

@@ -1,21 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document</title>
<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
</head>
<body>
<footer class="footer">
<img src="{{url_for('static', filename='images/logo_kobuki.png')}}" alt="logo" class="imgNav" />
<h3>© 2024 Kobuki Robot Project. All rights reserved.</h3>
<div class="buttonContainer">
<a href="{{ url_for('control') }}" target="_blank">
<button class="click connectButton">Controller</button>
</a>
</div>
</footer>
</body>
</html>

View File

@@ -1,58 +1,19 @@
{% extends 'base.html' %} {% block head %}
<link rel="stylesheet" href="../static/style.css" />
{% endblock %} {% block content %}
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Kobuki Robot Project</title>
<link rel="stylesheet" href="../static/style.css" />
</head>
<body>
<section class="container sectionHeight">
<p class="text">
The Kobuki Robot Project is an innovative initiative aimed at developing
a versatile and intelligent robot platform. Our goal is to create a
robot that can navigate autonomously, interact with its environment, and
perform various tasks.
</p>
<img src="{{url_for('static', filename='images/logo.png')}}" alt="logo" class="image" />
</section>
{%extends 'base.html'%}
<section class="container sectionHeight" id="about">
<h2>About the Project</h2>
<p>
This project is a collaborative effort involving engineers, researchers,
and enthusiasts. The Kobuki robot is equipped with various sensors,
including bumpers, cliff sensors, and gyroscopes, to help it navigate
and interact with its surroundings.
</p>
<p>Key features of the Kobuki Robot:</p>
<ul>
<li>Autonomous navigation</li>
<li>Obstacle detection and avoidance</li>
<li>Real-time data processing</li>
<li>Remote control and monitoring</li>
</ul>
</section>
{%block head%}
<section class="container" id="contact">
<h2>Contact Us</h2>
<form id="contact-form" action="/contact" method="post">
<label for="name">Name:</label>
<input type="text" id="name" name="name" required />
<label for="email">Email:</label>
<input type="email" id="email" name="email" required />
<label for="message">Message:</label>
<textarea id="message" name="message" required></textarea>
<button type="submit">Send</button>
</form>
</section>
{%endblock%}
{% include 'footer.html' %}
<script src="static/script.js"></script>
</body>
</html>
{% endblock %}
{%block content%}
<div class="container">
<div class="image-section">
<img src="kobuki.jpg" alt="Kobuki Robot" id="robot-image">
</div>
<div class="button-section">
<button class="btn">1</button>
<button class="btn">2</button>
<button class="btn">3</button>
<button class="btn">4</button>
</div>
</div>
{%endblock%}

View File

@@ -11,9 +11,13 @@
<img src="{{url_for('static', filename='images/logo_kobuki.png')}}" alt="logo" class="imgNav" />
<h3>Kobuki</h3>
<div class="buttonContainer">
<a href="{{ url_for('control') }}" target="_blank">
<button class="click connectButton">Controller</button>
<a
href="https://gitlab.fdmci.hva.nl/propedeuse-hbo-ict/onderwijs/2023-2024/out-a-se-ti/blok-3/vuupoofeehoo27"
target="_blank"
>
<button class="click connectButton">Placeholder</button>
</a>
<!-- <a href="./signup.html">sign in</a> -->
</div>
</nav>

View File

@@ -0,0 +1,20 @@
import socket
HOST = "127.0.0.1" # Listen on all available interfaces
PORT = 4024 # Port to listen on (non-privileged ports are > 1023)
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind((HOST, PORT))
s.listen()
print(f"Server listening on {HOST}:{PORT}")
conn, addr = s.accept()
with conn:
print(f"Connected by {addr}")
conn.sendall(b"hallo\n")
while True:
data = conn.recv(2048)
if data:
print("Received:", repr(data))
conn.sendall(b"message received\n")
if not data:
break

View File

@@ -1,7 +0,0 @@
import sys
import logging
logging.basicConfig(stream=sys.stderr)
sys.path.insert(0, "/home/ishak/rooziinuubii79/src/Python/flask/web")
from app import app as application

View File

@@ -1,11 +0,0 @@
# Feedback expert review
probeer Definition of done zelf te formuleren.
beter user stories maken
# Feedback peer review
- eventuele coaching op het gebied van technisch en taken
- meer duidelijkheid wat wij gaan gebruiken, welke technieken en tools. Hiermee kan je mensen koppelen aan taken zodat iedereen iets heeft gedaan.
- meer duidelijkheid van elkaar kwaliteiten en leerdoelen. Hiermee kan je goed inschatten wie wat kan doen en wie wat kan leren.

View File

@@ -1,42 +0,0 @@
# Hoofd en deelvragen
**Wat is de aanleiding?**
De aanleiding is de de behoefte aan veilige communicatie tussen apparaten. Dit is belangrijk omdat onbeveiligde dataoverdracht kan leiden tot datalekken.
**wat is het probleem/behoefte en waaruit blijkt dat?**
Het probleem is dat data die tussen apparaten wordt verstuurd kwetsbaar kan zijn. Dit blijkt nadat wij te horen hebben gekregen dat er niet goed was omgegaan met communicatie tussen apparaten.
**Wie heeft het probleem/behoefte?**
ons groepje, maar ook bijvoorbeeld grote bedrijven waar het heel belangrijk is dat data veilig wordt verstuurd zonder dat het in de verkeerde handen valt.
**Wanneer is het probleem/behoefte ontstaan?**
Het probleem is ontstaan nadat wij te horen hebben gekregen dat er niet goed was omgegaan met communicatie tussen apparaten.
**Waarom is het een probleem?**
Het is een probleem omdat onbeveiligde communicatie kan leiden tot datalekken waaronder privacy. Hiermee kunnen bedrijven in de problemen komen.
**Waar doet het probleem/behoefte zich voor (afbakening)?**
Het probleem komt voor in verschillende sectoren waar data tussen apparaten wordt verstuurd. Dit kan zijn in de zorg, industrie, op kantoor, maar ook met IoT projecten wat je thuis kan hebben.
## Hoofdvraag
Welke communicatieprotocol geeft de mogelijkheid om veilig en betrouwbaar te communiceren tussen IoT apparaten?
## Deelvragen
1. Wat houdt veilige en betrouwbare communicatie tussen apparaten in?
2. Welke protocollen zijn er om veilig en betrouwbaar te communiceren tussen apparaten?
3. Wat zijn de voor- en nadelen van de verschillende protocollen?
## Bronnen
- Singh, S., & Jyoti. (2024, June 7). Secure Communications Protocols for IoT networks: a survey. https://journal.ijprse.com/index.php/ijprse/article/view/1082
- Nguyen, K. T., Laurent, M., Oualha, N., CEA, & Institut Mines-Telecom. (2015). Survey on secure communication protocols for the Internet of Things. In Ad Hoc Networks (Vol. 32, pp. 1731) [Journal-article]. http://dx.doi.org/10.1016/j.adhoc.2015.01.006
- Miorandi, D., Sicari, S., De Pellegrini, F., & Imrich Chlamtac. (2012). Internet of things: Vision, applications and research challenges. In Ad Hoc Networks (Vol. 10, pp. 14971516) [Journal-article]. Elsevier B.V. http://dx.doi.org/10.1016/j.adhoc.2012.02.016
- Christiano, P. (2023, November 5). Top 9 IoT communication protocols & their features in 2024: An In-Depth guide - ExpertBeacon. Expertbeacon. https://expertbeacon.com/iot-communication-protocol/
- Yugha, R., & Chithra, S. (2020). A survey on technologies and security protocols: Reference for future generation IoT. Journal of Network and Computer Applications, 169, 102763. https://doi.org/10.1016/j.jnca.2020.102763
- De Mendizábal, I. (2022, June 16). IoT Communication Protocols—IoT Data Protocols. Technical Articles. https://www.allaboutcircuits.com/technical-articles/internet-of-things-communication-protocols-iot-data-protocols/
- IoT-technologieën en -protocollen | Microsoft Azure. (n.d.). https://azure.microsoft.com/nl-nl/solutions/iot/iot-technology-protocols
- Het IoT verbinden: wat is MQTT en waarin verschilt het van CoAP? (n.d.). https://www.onlogic.com/nl/blog/het-iot-verbinden-wat-is-mqtt-en-waarin-verschilt-het-van-coap/
- Nader, K. (2023, October 30). Wat zijn de voordelen van het gebruik van WebSocket voor IoT-communicatie? AppMaster - Ultimate All-in No-code Platform. https://appmaster.io/nl/blog/websocket-voor-iot-communicatie
- Sidna, J., Amine, B., Abdallah, N., & Alami, H. E. (2020). Analysis and evaluation of communication Protocols for IoT Applications. Karbala International Journal of Modern Science. https://doi.org/10.1145/3419604.3419754

View File

@@ -1,49 +0,0 @@
# Smart leerdoelen
Na de retrospective die ik heb gedaan, heb ik besloten om de volgende smart leerdoelen te stellen:
1 **Ik wil in de volgende blok meer gaan opletten op mijn teamgenoten om zo goed te weten waar iedereen mee bezig is.**
**specifiek:**
ik heb in onze groep de taak als voorzitter alleen merk ik op dit moment dat ik niet goed weet waar iedereen mee bezig is. Dat is niet handig omdat ik dan als voorzitter niet goed kan inschatten of iedereen op schema ligt.
**meetbaar:**
Ik wil dat ik aan het einde van de blok meer contact heb gehad met mijn teamgenoten en dat ik weet waar iedereen mee bezig is. Dit zorgt ervoor dat ik beter kan inschatten of iedereen op schema ligt en of ik moet ingrijpen.
**acceptabel:**
Dit is acceptabel omdat ik als voorzitter de taak heb om te zorgen dat iedereen op schema ligt en dat iedereen weet wat hij/zij moet doen. Zonder deze informatie kan ik niet goed mijn taak uitvoeren waardoor de teamgenoten niet goed kunnen werken.
**realistisch:**
Dit is realistisch omdat ik als voorzitter de taak heb om te zorgen dat iedereen op schema ligt en dat iedereen weet wat hij/zij moet doen.
**tijdgebonden:**
Ik wil dit doel behalen aan het einde van de blok. Dit is een realistische tijd omdat ik dan genoeg tijd heb om dit doel te behalen. Ik kan mij later ook nog tijdens de opleiding verbeteren op dit punt.
---
2 **Ik wil in de volgende blok meer gaan opletten op mijn eigen documentatie.**
**specifiek:**
In tegen stelling tot vorig jaar hou ik nu mijn documentatie niet goed bij. Dit is niet handig omdat ik dan niet goed kan zien wat ik daadwerkelijk heb gedaan en wat ik allemaal heb geleerd. Ook is het fijn dat ik dan kan terug kijken op mijn werk als ik het later nodig heb. Ik wil daarom minimaal 2 keer per week mijn documentatie bijwerken.
**meetbaar:**
Ik wil dat ik aan het einde van de blok mijn documentatie goed heb bijgehouden. Dit zorgt ervoor dat ik kan zien wat ik heb gedaan en wat ik allemaal heb geleerd. Ook kan ik dan terug kijken op mijn werk als ik het later nodig heb.
**acceptabel:**
Dit is acceptabel omdat ik dan toekomst gericht kan werken. Ik kan dan terug kijken op mijn werk als ik het later nodig heb. Ook kan ik dan zien wat ik heb gedaan en wat ik allemaal heb geleerd.
**realistisch:**
Dit is realistisch omdat ik dit vorig jaar ook heb gedaan. Ik weet hoe ik mijn documentatie moet bijhouden en wat ik allemaal moet opschrijven. Mijn eis van 2 keer per week is ook realistisch omdat ik dan genoeg tijd heb om mijn documentatie bij te werken.
**tijdgebonden:**
Ik wil dit doel behalen aan het einde van de blok. Dit is een realistische tijd omdat ik dan genoeg tijd heb om mijn documentatie bij te werken.

View File

@@ -1,11 +0,0 @@
# kobuki
# last sprint i have been busy with the website
# my job was to make an controller on the website for the kobuki
# so that we can control the kobuki with the website
# i did this using a protocol called MQTT
# mqtt is a protocol that is used to send messages between devices
# this is different from the normal protocol that i used last year
# it was a bit difficult to get the kobuki to work with the website
# next sprint i will be working on a sensor
# i will do some research on the different sensors that we can use
#